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Effects of nonuniform segment deformation on the constitutive relation of polymeric solids
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A polymeric solid is modeled as a network of beads and strings. Beads in the polymer are divided into bead
groups represented by the segment end points. Based on the equation of motion for each bead in the system,
a macroscopic equation of motion for the polymer is derived. Velocity fluctuations of beads result in a pressure,
the isotropic component of the stress, in the polymer. Interaction forces transmitted through segments con-
nected to bead groups are the major source of the stress in the polymer. The tendency of segments to achieve
their minima in Helmholtz free energy results in thermal elasticity of the polymer. Compared to the time scale
of these segment interactions, other interactions among beads groups are short in time, therefore, result in a
viscous stress. The motion of an average segment is modeled as an elastic spring immersed in a viscous fluid.
The inertia of the segment is neglected because the viscous force is much larger than the inertial force. The
governing equation for the deformation of the average segment is found to be a diffusion equation representing
the balance between the viscous force and the elastic force in the segment. If the time scale of the macroscopic
deformation is short compared to that of the deformation diffusion, the application of forces at both ends
results in nonuniform deformation of the segment, which diffuses from the ends toward the center. This
diffusion leads to relaxation of the macroscopic stress which we represent by a history integral. The kernel in
the integral is asymptotic to 1/At for a short timet, and is asymptotic to an exponentially decaying function for
a long timet, in which t is the elapsed time from initiation of the deformation. This theoretically predicted
kernel is observed in experiments conducted at constant temperature.
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I. INTRODUCTION

A polymeric solid is regarded as a network of polym
chains consisting of chain segments and segment end po
Classical network theory neglects interactions of the ch
segments with their surrounding medium, and the segm
end points are regarded as permanent. To consider stres
laxation, classical network theory is typically extended
two ways. First is the transient network model. In such
model, junctions can be formed and broken@1#, and the rate
of the annihilation of the junction points is related to t
stress relaxation in the material. The second approach
consider the interactions of the polymer segments with th
surrounding medium. The surrounding medium consists
side groups, dangling chains, small chain fragments, pla
cizer molecules, and chains from other segments. These
teractions were modeled as entanglement of chains in re
tion models@2#. In a separate development, Schweizer@3,4#
used a generalized Langevin-equation approach@5# to derive
the equation of motion of a polymer chain. Advantages
Schweizer’s approach includes the rigorous, at least con
tually, derivation of the equation of motion for polyme
chains from fundamental principles such as the Liouv
theorem in statistical mechanics. Based on the general
Langevin equations, many transport coefficients, such as
fusivity and viscosity, were calculated through the study
the corresponding time-correlation functions~see, e.g., Ref.
@6#!. While these developments in the field of physical che
istry significantly advanced our understandings of the beh
ior of polymers, recent applications of polymeric materi
especially for high-strain-rate applications, such as in H
1063-651X/2002/66~5!/051806~15!/$20.00 66 0518
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kinson bar experiments, require constitutive relations capa
of capturing the dynamical behavior of the material. Know
edge of the transport coefficients, such as viscosities, e
ticities, and diffusion coefficients, computed by integrati
the time correlations throughout the entire history of motio
although important building blocks, is not sufficient for th
purpose. This paper introduces a method to relate the m
roscopic constitutive relations to the polymer chain motio
at the molecular level. In this way, the method introduced
the present paper can take advantages of the physical un
standing of polymers gained from the study of physic
chemistry.

As a simple starting point, we simplify the generalize
Langevin equation of motion for polymer chains@3#. We
neglect inertial term in the equation and simplify the memo
kernel as ad function in time, because the time scale
interchain interactions in the polymer is short compared
the macroscopic time scale. As a result of this simplificati
polymer gel can be modeled as a network of interconnec
springs immersed in a viscous fluid. A similar physic
model was used by Gurtovenko and Gotlib@7# to study poly-
meric solids. These authors divide the stress in the polym
solid into three components, the elastic component resul
from the thermoelasticity of the chain segments, the visc
component resulting from the viscosity of the surroundi
medium, and the component accounting for interactions
tween chains and the viscous medium. The network was
sumed to be in a cubic form and the strain along a polym
segment was assumed to be uniform. The last assumptio
actually present in all network theories about constitut
relations published in the literature except in a recent w
©2002 The American Physical Society06-1
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by Harstadet al. @8#. This assumption implies that the se
ment relaxation timet is small compared to the time scale
the mean motion. In other words, the strain rate is sm
compared to 1/t. As we shall see in this paper, the relaxati
time t can be about 450 to 1000 s for some polymers. The
fore the effects of nonuniform segment deformation can
significant for those polymers.

In the present paper, we examine the effects of nonu
form deformation of the polymer segments, as first descri
by Harstadet al. @8#. Our approach differs from theirs in tha
here we accomplish the multichain homogenization at
beginning of the derivation, whereas they developed a sin
chain description which then requires homogenization.
both approaches the effects of nonequilibrium arise fr
nonuniformity of chain deformations. Because the strain a
therefore the force in the segment are not uniform, we m
first determine the appropriate expression connecting
macroscopic stress and local forces in the polymer segme
Typically there are two approaches to derive the macrosc
stresses from the interaction forces at the molecular le
The first approach is to study the average force across
arbitrary plane in the polymer as described in the class
book by Birdet al. @9#. The second approach, which was fir
used by Irving and Kirkwood@10# in the derivation of the
Navier-Stokes equation from the statistical mechanics, is
rectly related to the derivation of momentum equations of
system. This approach has been generalized to conside
ergy nonconserved systems such as particle interaction
granular and multiphase flows by Zhang and Rauenz
@11,12#, and Zhang and Prosperetti@13#. In the approach it is
seen that the existence of stress relies on the action-
reaction principle about the forces between an interac
pair of particles. When we consider forces acting on b
ends of a polymer segment, the action-and-reaction princ
does not apply directly, so that an additional generalizat
of the approach of Irving and Kirkwood is needed before
stress expression can be derived rigorously. This genera
tion is also useful for systems of distinguishable particl
This is explained in the following section and in Appendix
in the process of derivation of our macroscopic equation

In the derivation of macroscopic equations, we introdu
a concept of bead groups, which contain one end poin
polymer chains, together with the segments attached to
end point. Except for the loose end of a dangling chain,
end point is the position where chemical bonding jo
chains strongly together. A single polymer chain may follo
a tortuous pathway among its neighbor with multiple
points that are permanent in the sense that one chain ca
be pulled through another. In contrast to the end point of
segment, these tie points can slide along a chain, contribu
frictional and elastic forces. The contributions of these
points to the effective elasticity and viscosity are not neg
gible. In our approach to the problem, we represent the p
mer configuration by segments of each total chain and reg
a tie point as if it were the end point of a segment. O
aspect of the approximation introduced in this paper is t
no distinction is made between the tie points and the
points. We acknowledge that tie points are more mobile t
end points of a polymer chain. The approach we are takin
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this paper also excludes topological effects related
changes in end points, such as may result from aging.
effects of changes in segment end points and tie points n
to be considered as the theory undergoes further deve
ments and refinements.

Under these approximations, macroscopic equations
derived by averaging over the equation of motion for t
bead groups. Stress in the polymer system is expresse
contributions from three different physical origins. One
them comes from the random fluctuations of the beads in
polymer chains and is modeled as an isotropic pressure
portional to the absolute temperature of the polymer un
the assumption that thermal relaxation of an individual be
is fast compared to the macroscopic strain. Interacti
through segments connected to bead groups is another
tributor to the stress. Because the segments are consider
permanent, the typical time scale of these interactions is l
compared to that of other interactions among bead grou
The tendency of the segments to achieve their minima
Helmholtz free energies results in the thermal elasticity
the segments. Interactions between the beads in a seg
and their surrounding beads are modeled as viscous frict
because of the time scale difference. An average segme
modeled as an elastic spring immersed in a viscous fl
Different from the similar model used by Gurtovenko a
Gotlib @7#, we consider nonuniform deformation within th
polymer segments. Other interactions among bead gro
such as friction among beads belonging to different be
groups, furnish another contribution to the macrosco
stress and result in a viscous component of the stress du
the transient nature of these interactions.

Because the motion of a polymer segment is domina
by the viscous force, the inertia of the elastic spring is n
glected@3,4#. For a section of the average polymer segme
the difference in elastic forces at both ends is balanced by
viscous friction between the section and its surrounding m
dium. In this way the deformation of the spring satisfies
diffusion equation. This equation is solved in Sec. III. W
then assume that the relaxation time of a segment is m
longer than the time needed to propagate stress wa
through the length of the polymer segment. Under this
sumption an average polymer segment, the elastic spr
can be thought of being compressed~or pulled! at both ends
at the same time. Strain of the average segment then diff
toward the center of the segment. This diffusion of the str
leads to the history integral in the constitutive relation of t
material. For a short time, the kernel in the history integra
proportional to the inverse square root of the time from
initiation of deformation (1/At), while for a long time, the
kernel approaches a decaying exponential. This implies
nificant stiffening for a high strain rate motion. For a lo
strain rate motion, the kernel can be approximated by a M
well model.

The relaxation time of an average segment is related
the length of the segment. The longer the segment is,
longer is the relaxation time. The effects of segment len
distribution are studied in Sec. IV.

In Sec. V, we show experimental evidence of the theor
6-2
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EFFECTS OF NONUNIFORM SEGMENT DEFORMATION . . . PHYSICAL REVIEW E66, 051806 ~2002!
cally predicted kernel, especially the 1/At part for short
times.

II. DYNAMICS OF THE NETWORK

We consider a solid polymer in which the polymer cha
can be represented by strings and beads. Local strong i
actions between polymer chains at isolated points are re
sented by junctions. A polymer segment is defined as a
of polymer chain that ends either at a junction point or a
free end. Lety(a),a51,2, . . . ,J, be the positions of the seg
ment end points and

J5$y1,y2, . . . ,yJ% ~2.1!

be the set of the positions of all segment end points, wheJ
is the total number of segment end points in the system. T
set contains not only junction points but also segment
points belonging to dangling chains and the end points
stray chains.

We denoteygab to be the position of beadgab between
segment end pointsa andb. Let

Sab5$y1,y2, . . . ,yNab% ~2.2!

be the set of bead positions of the segment between ena
andb, in which Nab is the number of beads in the segme
excluding the end beads. Note thatSab is an empty set ifa
andb do not belong to the same segment or there is no b
in the string connected to both end pointsa and b. The
topological structure of the polymer system is uniquely d
termined by the collection of sets consisting of setJ and all
setsSab .

Let W be the set of velocitiesw of beads in the system

W5$w1,w2, . . . ,wN%, ~2.3!

where N is the total number of beads in the system. T
dynamics of the system is uniquely determined by polym
configuration

C5J3) Sab3W, ~2.4!

and the equations of motion for beads in the polymer, wh
the product) is over all setsSab .

Let fab be the force acting on segment end pointa from
the segment connecting end pointsa and b, and fa be the
other force acting on the segment end pointa. The equation
of motion for segment end pointa can be written as

ma

dwa

dt
5 (

b51,bÞa

J

fab1fa, ~2.5!

wherema is the mass of beada. The equation of motion for
the beads between segment end pointsa andb can be writ-
ten as

(
gab51

Nab

mgab

dwgab

dt
52fab2fba1 (

gab51

Nab

fgab, ~2.6!
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wheremgab
is the mass of beadgab and fgab is the force

acting on beadgab , other than the forcefab andfba from the
segment end pointsa andb.

Let Fs
ab andFa

ab be the symmetric and asymmetric par
of the interaction forces at both ends of the segment, defi
as

Fs
ab5

1

2
~ fab1fba!, Fa

ab5
1

2
~ fab2fba!. ~2.7!

With these definitions, we have

Fs
ab5Fs

ba , Fa
ab52Fa

ba , and fab5Fs
ab1Fa

ab .
~2.8!

Using Eqs.~2.5!–~2.8!, one finds

d

dt S mawa1
1

2 (
bÞa

(
gab51

Nab

mgab
wgabD 5Fa1 (

b51,bÞa

J

Fa
ab ,

~2.9!

where

Fa5fa1
1

2 (
b51,bÞa

J

(
gab51

Nab

fgab. ~2.10!

The forceFa defined in Eq.~2.10! and the momentum de
fined on the left side of~2.9! are summed over all beads i
the segments that have an end point ata. The mathematical
structure of these equations leads us to the definition of b
groups. For each pointya in set J of end points, we can
define a groupBa of beads in the polymer system. A bea
belongs to groupBa if the segment that the bead belongs
has an end pointya. The mass of this bead group is

mg
a5ma1

1

2 (
b51,bÞa

J

(
gab51

Nab

mgab
. ~2.11!

These groups are not mutually exclusive. A bead in a s
ment belongs to two such groups since a segment always
two end points, and its mass is equally distributed to b
groups it belongs. A bead at a segment end point belong
only one group and its mass is owned entirely by that gro
as expressed in Eq.~2.11!. In the following, we shall use this
concept of bead groups to derived macroscopic equat
and closure relations.

The average of a generic quantityga(C,t) associated with
a segment end point is

n~x,t !ḡ~x,t !5E (
a51

J

d~x2ya!ga~C,t !P~C,t !dC,

~2.12!

whereP(C,t) is the probability density function for polyme
configurationC at time t andn is the number density of the
segment end points defined by takingga5ḡ51 in the Eq.
~2.12!. The probabilityP(C,t) in Eq. ~2.12! normalizes to 1;
that is, its integral over all possible configurations is 1. T
summation in Eq.~2.12! sums over all segment end points
6-3
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The pair distribution functionP2(x8,x) for having a seg-
ment end point at positionx and another end point atx8 is

P2~x8,x!5 (
a51

J

(
b51,bÞa

J E d~x2ya!d~x82yb!P~C,t !dC.

~2.13!

The averagêg&2(x8,x), conditional on the requirement tha
each of the pointsx and x8 is occupied by a segment en
point, is

P2~x8,x!^g&2~x8,x!5 (
a51

J

(
b51,bÞa

J E d~x2ya!

3d~x82yb!ga~C,t !P~C,t !dC.

~2.14!

By taking ga as the momentum of bead groupBa ,

ga5mawa1
1

2 (
b51,bÞa

J

(
gab51

Nab

mgab
wgab, ~2.15!

we can express the mass flux as

r~x,t !ũ~x,t !5nḡ5E (
a51

J

d~x2ya!

3S mawa1
1

2 (
b51,bÞa

J

(
gab51

Nab

mgab
wgabD

3P~C,t !dC, ~2.16!

wherer(x,t) is the mass density

r~x,t !5E (
a51

J

d~x2ya!mg
aP~C,t !dC. ~2.17!

Using a Liouville equation for the probability distributio
function P(C,t), one can derive a transport equation f
quantityga as Eq.~8! in the paper by Zhang and Rauenza
@11# or Eq.~2.40! in the paper by Zhang and Prosperetti@14#.
By taking ga5mg

a , the transport equation becomes the co
tinuity equation.

]r

]t
1¹•~rw̄!50, ~2.18!

where

r~x,t !w̄~x,t !5E (
a51

J

d~x2ya!mg
awaP~C,t !dC,

~2.19!

is the average momentum of segment end points, from wh
the average velocityw̄(x,t) can be determined.

For ga defined in Eq.~2.15!, the transport equation be
comes the averaged momentum equation for the materia
05180
-

h

]rũ

]t
1“•~rũ•w̄!5“•sR1nFa1n (

b51,bÞa

J

Fa
ab,

~2.20!

where

sR52E (
a51

J

d~x2ya!Fma~wa2w̄!

1
1

2 (
b51,bÞa

J

(
gab51

Nab

mgab
~wgab2w̄!G

3~wa2w̄!P~C,t !dC, ~2.21!

is a stress due to velocity fluctuations of the beads in
system. In principle, the average velocitiesw̄ and ũ are not
the same. Using Eq.~2.11! we can write the difference as

r~ ũ2w̄!5
1

2E (
a51

J

d~x2ya! (
b51,bÞa

J

(
gab51

Nab

mgab

3~wgab2wa!P~C,t !dC. ~2.22!

By decomposingmgab
(wgab2wa) into mean and fluctuating

parts, expanding both the mean part ofmgab
(wgab2wa) and

the probability P(C,t) in Taylor series aboutx, and then
carrying out the integral, we can prove that Eq.~2.22! is of
order,2/L2, where, is the typical segment length andL is
an appropriate macroscopic length scale. The lower-or
terms vanish because of the symmetry of the integration
main. If the macroscopic length scale is large compared
the molecular scale, this velocity difference~2.22! can be
neglected. For this reason, we do not further distinguish
locities ũ and w̄ in the following text.

According to the definition~2.10! of Fa, the forces re-
sulted from the interaction of the beads within the sa
group sum to zero because of the action and reaction p
ciple. Therefore,Fa is a result of interaction between differ
ent bead groups represented by their segment end points
can be written as

Fa5 (
b51,aÞb

J

Fg
ab , ~2.23!

whereFg
ab is the interaction force between bead groupsBa

and Bb . If there is a segment connecting this pair of be
groups, the interaction forcefab transmitted through the seg
ment is not included inFg

ab . The group interaction forceFg
ab

satisfies Eq.~A12! in Appendix A. According to the exten
sion of the theorem proven in Appendix A, we have

nFa5“•sV, ~2.24!

sV~x,t !5
1

2E ^Fg&2~x8,x,t !~x82x!P2~x8,x,t !dx8,

~2.25!
6-4
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where^Fg&2 is the average group interaction force betwe
groups represented by segment end points atx8 and x. We
note that the forcêFg&2 represents the interactions amo
bead groups not transmitted through segments connec
them. These interactions are transient while the connec
between bead groups are considered permanent. There
the time scale of the variation of the force^Fg&2 is short
compared to that of forcefab transmitted through a segme
connecting the pair of bead groups. This time scale dif
ence enable us to model force^Fg&2 as a viscous force a
shown in the following section. We assume that the aver
force acting on a bead is proportional to the relative veloc
between the bead and its surroundings. This assumption
ables us to reprove Eq.~2.24! and to calculate the stresssV

explicitly.
The force term defined in the last term of the right side

Eq. ~2.20! can also be expressed as the divergence of a s
tensor after the use of the theorem extension proven in
pendix A.

n (
b51,bÞa

J

Fa
ab5“•sJ, ~2.26!

sJ~x,t !5
1

2E ^Fa&2~x8,x,t !~x82x!P2~x8,x,t !dx8,

~2.27!

where ^Fa&2(x8,x,t) is the asymmetric part of the averag
interaction force between the two end pointsx and x8 of a
segment. If the two end points do not belong to the sa
segment, the force is zero. Therefore, only those pairs c
nected by segments have contributions to the integral.
calculate this stress, we need to know the average force
the ends of the segment. To calculate them, we can perf
an ensemble average over all segments with end poin
positionsx andx8. The average behavior of such segme
can be modeled as an elastic spring immersed in a visc
fluid. The elasticity comes form the tendency of the avera
segment to achieve the minimum in Helmholtz free ener
and the viscosity comes from interactions of the beads in
segment with the surrounding beads not belonging to
same segment. In the following section, we calculate the
erage force between a segment and then use Eq.~2.27! to
calculate this stress.

With Eqs.~2.26! and~2.24!, and neglecting the differenc
betweenw̄ and ũ, we can write the momentum equatio
~2.20! in the following conservation form:

]rũ

]t
1“•~rũ•ũ!5“•~sR1sV1sJ!. ~2.28!

With this momentum equation, we now see that the to
stress in the polymer system contains three parts. The
partsR results from velocity fluctuations of the beads relat
to thermal motion. Both the second and the third parts r
resent interactions between bead groups. The second termsV

represents the interaction between polymer segments be
ing to different bead groups but not through segments c
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necting them. The third stresssJ represents the interaction o
bead groups through segments connecting them. The
proach used in the derivation of the macroscopic equati
~2.18! and~2.28! for the polymer system is an extension of
similar approach used by Zhang and Rauenzahn@11,12# and
Zhang and Prosperetti@13# in the derivation of averaged
equations for granular and two phase flows.

In the derivation of the momentum equation~2.28!, there
is an assumption that the typical polymer segment is m
longer than a monomer and is much shorter than the ma
scopic length scale. To proceed further beyond this po
both intersegment and intrasegment interaction models h
to be introduced.

III. CLOSURE RELATIONS FOR THE STRESSES

A. Closure for sR

According to definition~2.21!, the stresssR is propor-
tional to the correlation between the velocities of the be
in the segment and the velocities at the segment end po
For a long segment, only those beads close to an end p
have velocities correlated to the velocity at the end point a
have significant contributions to the stress. Therefore, on
small amount of mass in the polymer contribute tosR and
this stress is small compared to the stresssJ, which is re-
lated to thermal motions of all beads in the segments.

Under the assumption of thermal equilibrium, the stre
sR is proportional to the kinetic energy of the thermal m
tion and therefore proportional to the absolute temperatuT
of the system. If there is a perturbation about the therm
equilibrium, the velocity fluctuations of the beads cause m
mentum exchange across streamlines of the mean flow a
the kinetic theory of a gas@15#. This effect can be modeled
as viscosity. While this effect is important in a dilute gas, th
viscosity is small compared to the viscosity caused by fr
tion among the polymer chains. Therefore, we can appro
mate the stresssR simply by a pressure proportional to th
absolute temperatureT and the density of the segment en
points, which is proportional to the density defined in E
~2.17!.

sR52CRrTI , ~3.1!

whereCR is a coefficient andI is the identity tensor. In a
solid material, this stress is offset by elasticity of the ma
rial, since the strain of a material is defined to be zero at
equilibrium. Therefore, this pressure should be written as

sR5
lR

11tr~«!
tr~«!I , ~3.2!

wherelR5CRrT.

B. Closure for sV

As mentioned in Sec. II, the stresssV represents interac
tions of beads in one group with beads in a different gro
The dynamic nature of a polymer chain makes these inte
tions transient in time; and the time scale of this interact
is small compared to that of the interaction between b
6-5
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groups caused by a segment connecting them, becaus
segments are considered permanent between the two
groups. The force acting on beadg in a segment~including a
segment end point! can be modeled as viscous friction and
random Brownian forcef b with zero mean@3,4,9,16#,

fg52Cfmg@wg2v~yg!#1fb , ~3.3!

whereCf is a friction coefficient andv(yg) is the mean ve-
locity of the surrounding medium experienced by beadg.
Thus 1/Cf has the dimension of time. This is the relaxati
time of the beadg in the surrounding viscous medium. Th
Langevin force is the starting point for a single-chain mod
as derived by Harstadet al. @8#. For polymers such as poly
isobutylene, at 217°C, if we take the bead sizea52.0 Å, the
bead mass ofmg556 g/mol59.3310223 g, and the viscos-
ity of the melt asm5105 P as in the book by Rodriguez@17#,
the friction coefficient can be estimated using the Sto
drag law asCf56pma/m54.131020 s21. Although the
Stokes drag law is only a rough approximation, the orde
magnitude ofCf is expected to be meaningful.

We assume that a typical polymer segment length is s
compared to the macroscopic length scale~i.e., ,/L!1).
With this assumption the time difference for a perturbation
reach both ends of the segment is negligible compared to
macroscopic time scale. The velocity experienced by beag
can be written as

v~yg!5
1

2
@ ũ~yb!1ũ~ya!#1vr~yg!, ~3.4!

wherevr is an asymmetry function about the segment cen
representing the difference between the mean velocity e
rienced by a particle atyg and the average of the mean v
locities experienced at both ends of the segment.

Using Eq.~3.3!, and definitions~2.16! and~2.17!, we can
write the second term on the right side of Eq.~2.20! as

nFa5
Cf

4 E (
a51

J

(
b51

J

d~x2ya!mab

3@ ũ~yb!2ũ~ya!#P~J,t !dJ, ~3.5!

where mab denotes the total mass of segments with e
points a and b and P(J,t) is the probability distribution
function of segment end points. This probability distributi
function can be obtained by integrating over all degrees
freedom inC except those inJ. In the derivation of this
equation, we have integrated over all degrees of freed
other than the positions of the segment end points, and u
the asymmetry property ofvr .

Letting Gab5mab@ ũ(yb)2ũ(ya)# in Eq. ~A12!, and us-
ing the theorem in Appendix A, we obtain Eq.~2.24! again;
that is, the forcenFa can be expressed by the divergence
a stress. The stress is
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sV5
Cf

8 E (
a51

J

(
b51

J

d~x2ya1hab!mab

3@ ũ~yb!2ũ~ya!#~yb2ya!P~J,t !dJ, ~3.6!

where uhabu,,. In proving relation~2.24!, we explicitly
used the action-and-reaction principle. This principle is i
plicitly contained in Eq.~3.3! because the viscous force
expressed in terms of relative velocity. In Eq.~2.25!, the
force ^Fg&2 is the average interaction force between a pair
bead groups. Even if these two bead groups are not c
nected by a segment, the force is not necessarily zero.
force is modeled as friction acting on the beads as in
~3.3!. Therefore, in Eq.~3.6! the integral is over all segments
If the segment end pointsa and b are not connected by a
common segment,mab , and thus the integrand, vanishes.

Using Taylors expansion to calculateũ(yb)2ũ(ya) and
keeping only the first term, we can write the stresssV as

sV5
Cf

8
“ũ~x!E (

a51

J

(
b51

J

d~x2ya!mab

3~yb2ya!~yb2ya!P~J,t !dJ. ~3.7!

At this point it is interesting to note that we only used t
asymmetry ofvr in deriving sV, and the actual distribution
of vr between the two segment end points has no effect
the stresssV. In the following, we show that the distributio
of vr along the average segment affects the stresssJ.

We note that the integrand in Eq.~3.7! is a symmetric
tensor, therefore, only the symmetric part of the velocity g
dient has a contribution tosV. With this, we have

sV5m•«̇, ~3.8!

where«̇ is the rate of strain defined by

«̇5
1

2
@“ũ1~“ũ!T#, ~3.9!

andm is the symmetric viscosity tensor

m~x,t !5
Cf

8 E (
a51

J

(
b51

J

d~x2ya!mab

3~yb2ya!~yb2ya!P~J,t !dJ. ~3.10!

This integral is over all segments with an end point atx.
Multiplying both sides of Eq. ~3.10! by 15*d(x1r
2yb)d3r and exchanging the order of integration, we hav

m~x,t !5
Cf

8 E ms~x,r ,t !rr Ps~r ,x,t !d3r , ~3.11!

where ms is the average segment mass betweenx and x
1r , andPs(r ,x,t) is the probability distribution function of
finding a segment with end points atx andx1r ,
6-6
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Ps~r ,x,t !5E (
a51

J

(
b51

J

d~x2ya!

3d~x1r2yb!xabP~J,t !dJ, ~3.12!

where xab51 if end pointsa and b are connected by a
segment andxab50 otherwise.

If we assume that the polymer configuration aroundx is
isotropic, that is, bothms and Ps are spherically symmetric
aboutx, we can carry out the angular integral contained
Eq. ~3.11! and the viscosity tensor can be represented b
scalarm and Eq.~3.8! becomes

sV5m«̇, m~x,t !5
p

6
CfE ms~r ,x,t !r 4Ps~r ,x,t !dr.

~3.13!

C. Closure for sJ

StresssJ is the most important stress because it rep
sents the force transmitted through polymer segments,
backbone of the polymer network. To calculate this str
using Eq.~2.27!, we need to study the averaged equation
motion of a polymer segment. Under the assumptions
the interaction force between a polymer segment and its
rounding medium fluctuates very rapidly in time compar
to the bulk motion of the polymer and that such interactio
are statistically isotropic, the equation of motion for a be
in a polymer segment can be written as@3#,

mgab

dwgab

dt2
52“W~rgab!2hgab~wgab2v!1Fgab,

~3.14!

where W is the intrasegment potential of the mean forc
hgab is the friction constant, andFgab is a random force.

Upon the ensemble average over all possible polymer
ments connecting the end pointsa andb, we find the aver-
aged equation of motion for the segments.

drsu

dt
5

]N

]x
2Cfrs~u2v!, ~3.15!

whereN is the average internal force in the segment, and
x axis is along the line connectingya andyb.

In this equation, the time scale on the left side is t
macroscopic time scale, while the relaxation time scale
1/Cf , which is much smaller than the macroscopic tim
scale, as mentioned in the preceding subsection. There
the effect of inertia, that is, the left side of Eq.~3.15!, can be
neglected.

The effect of the thermal motion represented by
Brownian force in Eq.~3.3!, and the potential energy be
tween neighboring beads, are represent by the Helmh
free energy. The average forceN(x,t) at a point in the seg-
ment can be calculated from the free energy@9# as

N5k0

]l

]x
, ~3.16!
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where l is the displacement relative to the center of t
polymer segment andk0 is the elasticity coefficient propor
tional to absolute temperatureT.

k05CkkT/,5CkkTrs /ms , ~3.17!

whereCk is a coefficient,ms is the mass of the segment, an
k51.3807310223 J/K is the Boltzmann constant.

Using Eq.~3.16! in the frame fixed at the segment cente
the momentum equation can be written as

k0

]2l

]x2
2Cfrs~u2v!50. ~3.18!

The velocities in this equation are the velocities relative
the segment center. Symmetry about the average seg
and about the center requires that both velocitiesu andv be
asymmetrical about the mass center. We assume that the
erage segment has no shearing and bending strength an
formation of the segment is along the axis connectingya and
yb. These velocities represent the mean deformation rate
the average segment and its surroundings. We assume
these deformation velocities are linearly related, or

u2v5Cu, 0<C<1, ~3.19!

whereC is a constant along the segment. In this way, we
that the last term of Eq.~3.18! represents the resistance to t
segment deformation from its surroundings.

As a first approximation, we neglect nonlinear effects a
write

u5
]l

]t
. ~3.20!

With these approximations, the equation for the displacem
field can be written as

]l

]t
5

,2

4t

]2l

]x2
, ~3.21!

where, is the length of the segment and

t5
,2rsCfC

4k0
5

,3msCfC

4CkkT
. ~3.22!

For a segment consisting of 100 polyisobutylene monom
the segment length can be estimated as 400 Å, and the re
ation time at temperature 217 °C can be estimated to
about 450 s if we assume the coefficientC/Ck50.5. Al-
though at this temperature polyisobutylene is in the m
form, the segment relaxation time is still meaningful. F
polyisobutylene gel, the viscosity is expected to be mu
larger, and therefore the segment relaxation time is expe
to be much longer. This rough estimation of segment rel
ation time suggests that even for fairly small macrosco
strain rate, say 1023 s21, the effects of nonuniform deforma
tion could be significant.

The boundary and initial conditions for this equation c
be written as
6-7
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u~,/2,t !5ue~ t !, l~0,t !5l~x,0!50, ~3.23!

whereue(t) is the average velocity relative to the mass ce
ter of the segment. Under the assumption that the ave
position of the segment forms a straight line connecting b
segment end points, and that the forceN acts along the
straight line, the forceN acting on the end of the segme
can be obtained by solving Eq.~3.21! with boundary and
initial conditions ~3.23!. Detailed procedure of solving thi
equation is described in Appendix B. The magnitude of
force is calculated as

N~,/2,t !5
2k0

, F E
0

t

ue~ t8!dt81E
0

t

ue~ t8!Kr S t2t8

t Ddt8G ,
~3.24!

or equivalently~by changing integration variablet95t2t8
and then denotingt9 as t8)

N~,/2,t !5
2k0

, F E
0

t

ue~ t8!dt81E
0

t

ue~ t2t8!Kr S t8

t Ddt8G ,
~3.25!

where

Kr S t

t D5A t

ptF112(
k51

`

exp~2k2t/t !G21. ~3.26!

As proven in Appendix B, the kernelKr goes to zero as time
goes to infinity. This kernel describes fading memory of t
segments. With this result, the forces^Fs&2 and ^Fa&2 aver-
aged over all the segments with the same segment end p
in the ensemble can be written as

^Fs&250 and ^Fa&25N~,/2,t !. ~3.27!

If points x and x1r are not connected by a segment, t
force between them is considered zero. With such con
tional average the stresssJ described in Eq.~2.27! can be
written as

sJ~x,t !5
1

2E NS ,

2
,t D rPs~r ,x,t !d3r . ~3.28!

We now assume that the motion of the average segme
affine, so that the average velocityue is related to the mac
roscopic stain rate«̇ as

ue~ t !5
,

2
~ «̇•n!•n, ~3.29!

where n5r /r . We note that the relaxation time defined
Eq. ~3.22! is a function of the segment length,5r . Substi-
tuting Eq. ~3.29! into Eq. ~3.25! and then into Eq.~3.28!,
leads to
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1

2
k0«pq~ t !E npnqninj Ps~r ,x,t !r 3drdV

1
1

2
k0E

0

t

«̇pq~ t2t8!

3F E npnqninjKr S t8

t~r ! D r 3Ps~rn,x,t !drdVGdt8,

~3.30!

whereV is the solid angle. If we assume that the pair dist
bution is spherically symmetric, we can carry out the angu
integral to find

sJ5l0@ tr~«!I12«#1l0

3E
0

t

$tr@ «̇~ t2t8!#I12«̇~ t2t8!%K̄r~ t8!dt8,

~3.31!

where

l05
2p

15
k0E r 3Ps~r ,x,t !dr ~3.32!

and

K̄r~x,t !5

E Kr S t

t~r ! D r 3Ps~r ,x,t !dr

E r 3Ps~r ,x,t !dr

. ~3.33!

Using Eq.~B18! in Appendix B, we see that

lim
t→`

K̄r~x,t !50. ~3.34!

Relaxation of the kernelK̄r represents the fading memory o
the polymer material. Equation~3.33! implies that the mac-
roscopic relaxation is determined by the distribution of po
mer segment length. To understand the properties of the
nel K̄r , we first study the properties of the kernelKr for a
fixed segment length with a fixed relaxation time. Using E
~B17!, we can show that, ast approaches zero,Kr ap-
proachesAt/pt. The functionKr is plotted in Fig. 1. As
shown in Fig. 1, a good approximation ofKr can be written
as

Kr S t

t D5HAt/~pt !2erf~At/t ! if t,0.15t

Ae2t/ta otherwise,
~3.35!

whereA'2.00 andta'0.101t. This implies that, at the ex
ponential decay region ofKr , the relaxation time of the ex
ponential decay is about an order of magnitude smaller t
t.

For K̄r , using Eq.~B17!, we can show for any segmen
length distribution,
6-8
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lim
t→0

K̄r~x,t !At5C, ~3.36!

whereC is a positive number. In other words, the kernelK̄r

is proportional to 1/At for a small timet.
The relaxation timet in the history integrals is assume

to be constant during the deformation from time 0 tot. In
many polymers, the friction coefficientCf , thus the relax-
ation timet, is sensitive to temperature. The heat produc
during the deformation could result in a temperature incre
in the polymer, especially in the cases of high-strain-r
motions. The effects of temperature change are not con
ered in the present paper and are a subject of further
search.

IV. EFFECTS OF SEGMENT LENGTH DISTRIBUTION

In a polymer system the segment length is usually wid
dispersed and so are the relaxation times for the segm
according to Eq.~3.22!. To understand basic effects of th
segment length distribution, we first study a bimodal dis
bution with short segment length,s and long segment lengt
,, . For this case the probability distribution of segmentsPs
takes the following form:

Ps~r ,x,t !5F Ns

4p,s
2
d~r 2,s!1

N,

4p,,
2
d~r 2,,!Gn~x,t !,

~4.1!

wheren(x,t) is the number density of segment end poin
while N, and Ns are, respectively, the average numbers
long and short segments connected to the pointx. Using Eq.
~3.33!, the average kernel can be calculated as

FIG. 1. Bounds and asymptotic behavior of kernelKr(t/t).
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K̄r~ t !5

Kr~ t/ts!1
N,,,

Ns,s
Kr~ t/t,!

11
N,,,

Ns,s

, ~4.2!

wherets and t, are the relaxation times for the short an
long segments calculated using Eq.~3.22!. The ratio
N,,,

3/Ns,s
3 can be regarded as the volume ratio of the t

different segments. In Fig. 2, we show the variation ofK̄r(t)
using,, /,s53 andN, /Ns5931024, with a corresponding
long segment to short segment volume ratio of 2.431022. In
this figure, it is shown that, for a very short time (t/ts,0.1
in the figure! the average kernel behaves like 1/At. After that
(0.1,t/ts,0.5) the kernel behaves like an exponential w
the relaxation time controlled by the short segments. Afte
transition period (t/ts.1), the kernel behaves like expone
tial again with the relaxation time controlled by the lon
segments. Even though, in the example plotted in Fig. 2,
volume ratio of long segments is small (2.431022) com-
pared to the short one, long segments still control the lo
relaxation time.

In the sense of a generalized distribution, we choose a
of segment lengths, i , and expand the probability distribu
tion Ps as

Ps~r ,x,t !5n~x,t !(
i 51

`
Ni

4p, i
2
d~r 2, i !, ~4.3!

whereNi is the average number of segments with length, i
connected to the segment end pointx. With expansion~4.3!,
we calculated

FIG. 2. Behavior of average kernel in a system with bimod
segment length distribution. The long to short segment length r
is 3.0 and the long segment to short segment volume ratio is
31022.
6-9
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K̄r~ t !5(
i 51

`

b iKr~ t/t i !, ~4.4!

where

b i5
Ni, i

(
i 51

`

Ni, i

, (
i 51

`

b i51, ~4.5!

andt i is the relaxation time corresponding to segment len
, i calculated using Eq.~3.22!.

For practical problems, not all terms in Eq.~4.4! are im-
portant; only those terms with relaxation times of the sa
order of magnitude as the time scale of each problem
important. For a term with small relaxation time compared
the problem time scale, the kernel can be approximated
d function in time, and the strain rate can be treated a
constant during the kernel relaxation time and thus can
taken out from the history integrals. Therefore, such a term
nearly proportional to the strain rate at a given time, and
be modeled as a viscous term. The terms in Eq.~4.4! asso-
ciated with large relaxation times compared to the probl
time scale have a more complicated behavior since they
tain the fast relaxation parts, the parts proportional to 1At
for a short time, and slow relaxation parts for larget. The fast
relaxation part in the history integral, as mentioned abo
can be treated as a viscous part. For the slow relaxation
in the time scale of the practical problem, the kernel can
treated as a constant, and pulled out from the history integ
In this way the only thing left in the history integral is th
strain rate, which can be integrated to be a strain. There
the slow relaxation part behaves as an elastic term during
time scale of the problem. As a consequence of this, dep
ing on the range of time scales of a problem, only a f
terms in Eq.~4.4! are significant. For a practical problem, w
then combine the terms treated as a viscous stress insJ with
the viscous stress fromsV, and write the total stresss
5sR1sV1sJ in the polymer system as

s5~lR1le!tr~«!I12le«1me«̇1le

3E
0

t

$tr @ «̇~ t2t8!#I12«̇~ t2t8!%Ke~ t8!dt8, ~4.6!

wherele(.l0) is the apparent Lame´ coefficient containing
effects of the kernels in Eq.~4.4! associated with long relax
ation times,me is the apparent viscosity containing effects
the terms in Eq.~4.4! associated with short relaxation tim
and

Ke~ t !5(
i 51

`

a iKr~ t/t i !, a i5
l0b i

le
.0, and (

i 51

`

a i,1.

~4.7!

The terms contained in summation~4.7! belong to a subset o
the terms contained in~4.4! with the relaxation times com
parable to the time scale of the problem.
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The derivation of expressions for stressessV andsJ have
been based on the assumption of small deformations so
the pair distribution function is spherically symmetric. W
have also dropped the nonlinear effect of« from sR. As
mentioned in Sec. III,lR is small compared tole , so that
for many practical purpose,lR can be neglected. As a con
sequence of this, this model predicts that the Poisson’s r
is about 0.25 for small deformations.

V. COMPARISON WITH EXPERIMENTS

Experiments described in this paper were performed in
pendently from the theoretical development of this pap
The specimen was a nitroplasticized estane cylinder, 7.8
in height and 7.6 mm in diameter. Both ends of the specim
were well lubricated to ensure zero lateral stress durin
uniaxial compression in the axial direction of the cylinde
The experiment was conducted at room temperature on
MTS-810 hydraulic testing machine. The largest strain r
in the compression was 3.331022 s21. At such strain rates
the viscous stress and temperature change due to heat
eration can be neglected, and the stress~4.6! can be written
as

s~ t !5Eee~ t !1EeE
0

t

ė~ t2t8!Ke~ t8!dt8, ~5.1!

whereEe55le/2 is the effective Young’s modulus.
In a compress-and-hold experiment, if the duration of

compression motion is short compared to the relaxation ti
the strain rate can be approximated as

ė5ed~ t !. ~5.2!

The stress in this case can then be written as

s~ t !5se@11Ke~ t !#, se5Eee. ~5.3!

The time dependent stresss(t) is measured in the experi
ment. SinceKe vanishes as time becomes large in Eq.~3.34!,
the stressse is taken to be the stresss(t) at a sufficient long
time when the change of its value is not significant. T
kernel Ke can then be calculated using the measured st
s(t). The results are shown in Fig. 3. The experimental d
can be fitted well using one term ofKr in Eq. ~4.7!.

Ke~ t !5aKr~ t/t!, a50.1, t51100 s. ~5.4!

It is interesting to note that, in this case the relaxation ti
for the long decay, the exponential part, can be calculate
ta'111.1 s, using definition~3.35!. This time scale coin-
cides with the time scale of this experiment, which is n
accidental. As mentioned in Sec. 4, the complete kernel
be written as the summation of a series ofKr with different
relaxation times, and only those terms with the relaxat
times close to the time scales of the problem are signific

To further illustrate the 1/At behavior of the kernel for
short times and to compare with experiments, we plot
kernelKr and its experimental values in Fig. 4 with logarith
6-10
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EFFECTS OF NONUNIFORM SEGMENT DEFORMATION . . . PHYSICAL REVIEW E66, 051806 ~2002!
mic scales in both axes. The experimental values are sh
to approach the straight line with slope21/2, as predicted
by our theory.

To illustrate the long time behavior of the kernel, we al
plot Ke in Fig. 5 with logarithmic scale in the vertical axis
As mentioned before, for a large time,Ke approaches an
exponential function, which is a straight line in the plot. T

FIG. 3. KernelKe . The squares and triangles are the resu
calculated form two experiments. Both of the experiments w
carried out by compressing the nitroplasticized estane speci
with a constant strain rate for 3.6 s and then recording the st
s(t) change with time for 302 s while holding the strain consta
The final strain in these experiments was 15.2%.

FIG. 4. The kernelKe is plotted in a log-log scale. This figur
illustrates the asymptotic behavior ofKe . It is shown that, as pre
dicted by the current theory, as timet approaches zero, the exper
mentally obtained kernel indeed approaches a 1/At asymptote,
which is a straight line with slope21/2.
05180
n

experimental values are seen to scatter around the theore
curve in the figure. The scatter is due to the noise in
experiment, which becomes more visible in a logarithm
plot for small values.

With the relaxation time and coefficient of the kernel d
termined using experimental data, we use this kernel to
culated another compress-and-hold experiment with lon
compression duration and lower strain rate than those of
experiments described above. The comparison of the ca
lated stress and the experimental results are shown in Fi

In many phenomenological models, the material is mo
eled as a series of Maxwell elements connected in paralle
many numerical codes, it is numerically convenient to e
press the kernel in terms of decaying exponential functio
called a prony series. For this purpose, it is interesting
approximate the kernel derived in this paper in terms o
prony series as

Kr~ t/t!'0.74(
n51

m

10n/2 exp~210nt/t!, ~5.5!

where m is determined by equating 102mt to the smallest
time scale in the problem. Figure 7 shows the approximat
to the kernelKr using different values ofm. Roughly speak-
ing, Fig. 7 shows that a term per decade is needed to
proximate the kernel derived in this paper.

VI. CONCLUSION

Beads in a polymer network are divided into bead grou
represented by the end points of the segments to which

s
e
en
ss
.

FIG. 5. To illustrate the long time behavior, in this figure bo
theoreticalKe and the experimental values are plotted in a logari
mic scale. The theoretical values are shown to form a straight
for large times, meaningKe is asymptotic to an exponentially de
caying function for large times. The experimental values sca
around the theoretical curve for large times. The scatter is due to
noise in the experiment, which becomes more visible in a logar
mic plot than in a normal plot for small values.
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beads belong. Macroscopic continuity and momentum eq
tions are derived based on the interactions of the b
groups. Macroscopic stress can be divided into three p
The first part represents the effects of velocity fluctuations
the beads in the system. The second part of the stress c
from interactions among bead groups, except for the inte
tion forces transmitted through the segments connec
them. The effect of the interaction forces transmitted throu
segments connecting different bead groups is represente
the third part. The interactions among the bead groups
resented by the second part are transient while the segm
connecting the bead groups are permanent. This differenc
time scale enables us to model the interaction force betw

FIG. 6. Comparison of calculated stress and experimental
ues. The experiment was carried out by compressing nitropla
cized estane specimen with a constant strain rate for 35.5 s.
final strain is 15.3%.

FIG. 7. Prony series approximation of the kernel.
05180
a-
d

ts.
f
es

c-
g
h
by
p-
nts
in

en

a bead and its surrounding beads belonging to other
ments as a viscous force, and to model the second part o
stress as a viscous stress. To calculate the third part of
stres, one needs to model the average motion of segm
The potential and thermal motion of the beads in a segm
results in a Helmholtz free energy. The tendency of the s
tem to maintain a minimum free energy leads to therm
elasticity of the segment. Since the force acting on a b
from its surrounding medium can be modeled as a visc
force, the motion of the segment can be modeled as an e
tic spring immersed in a viscous fluid. The inertia of th
segment is neglected because it is small compared to
viscous force. For this reason, the equation of motion for
average segment can be written as a diffusion equation
the displacement. When the segment is pulled at the ends
deformation takes time to diffuse toward the center of
segment; therefore the deformation is highly nonuniform
the average segment. This diffusion of deformation result
a history integral in the constitutive relation for the third pa
of the stress. After solving the diffusion equation, the ker
in the history integral is found to approachAt/t for a short
time t, and to approach a decaying exponential for a la
time, wheret is the relaxation time related to the deform
tion diffusion. In this way, the constitutive relation for a sol
polymer can be written in three terms, the viscous term,
elastic term, and the history dependent term. The relaxa
time t in the history dependent term is a function of th
segment length. For a polymer, the segment length is wid
dispersed and so is the spectrum of relaxation times. F
given practical problem, only a few relaxation times close
the time scale of the problem are significant. The stress
sociated with a short relaxation time can be modeled a
viscous stress and the stress associated with a long relax
time can be modeled as an elastic stress.

The properties of our theoretically predicted kernel in t
history integral are conformed by experiments.
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APPENDIX A

Theorem: Let F andGab be uniformly differentiable func-
tions of y1 ,y2 , . . . ,yn , where a and b are two integers
satisfying 1<a<n and 1<b<n. If the functionGab satis-
fies

Gab~y1 ,y2 , . . . ,ya , . . . ,yb , . . . ,yn!

52Gba~y1 ,y2 , . . . ,ya , . . . ,yb , . . . ,yn!,

~A1!

then there is a following identity:

l-
ti-
he
6-12
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E (
a51

N

d~x2ya! (
b51

N

F~y1 ,y2 , . . . ,yn!

3Gab~y1 ,y2 , . . . ,yn!dy1dy2 . . . dyn

5
1

2

d

dxE (
a51

N

(
b51

N

d~x2ya2hab!F~y1 ,y2 , . . . ,yn!

3Gab~y1 ,y2 , . . . ,yn!~yb2ya!dy1dy2 . . . dyn

~A2!

for a hab5uab(yb2ya), and 0,uab,1.
Proof: Let I be the integral on the left side of Eq.~A2!.

Since the integral is independent ofa and b, by exchange
roles ofa andb, we have

I 5
1

2E (
a51

N

(
b51

N

@d~x2ya!F~y1 ,y2 , . . . ,yn!

3Gab~y1 ,y2 , . . . ,yn!1d~x2yb!F~y1 ,y2 , . . . ,yn!

3Gba~y1 ,y2 , . . . ,yn!#dy1dy2 . . . dyn . ~A3!

We note that the contribution from terms in whicha5b is
zero because of Eq.~A1!. We now change integration var
ables as

r g5yg2y1 , 1<g<n ~A4!

and denote

F~y1 ,y2 , . . . ,yn!5 f ~y1 ,r 2 , . . . ,r n!, ~A5!

Gab~y1 ,y2 , . . . ,yn!5gab~y1 ,r 2 , . . . ,r n!, ~A6!

then the integral becomes

I 5
1

2E (
a51

N

(
b51

N

@d~x2r a2y1! f ~y1 ,r 2 , . . . ,r n!

3gab~y1 ,r 2 , . . . ,r n!2d~x2r b2y1! f ~y1 ,r 2 , . . . ,r n!

3gab~y1 ,r 2 , . . . ,r n!#dy1dr2 . . . drn , ~A7!
05180
where we have used Eq.~A1!. Upon integrating overy1, we
have

I 5
1

2E (
a51

N

(
b51

N

@ f ~x2r a ,r 2 , . . . ,r n!

3gab~x2r a ,r 2 , . . . ,r n!2 f ~x2r a2r ab ,r 2 , . . . ,r n!

3gab~x2r a2r ab ,r 2 , . . . ,r n!#dr2 . . . drn , ~A8!

where

r ab5r b2r a5yb2ya . ~A9!

Upon using the Lagrangian theorem for the product off and
gab , we have

I 5
1

2E (
a51

N

(
b51

N
]

]x
@ f ~x2r a2hab ,r 2 , . . . ,r n!

3gab~x2r a2hab ,r 2 , . . . ,r n!#r abdr2 . . . drn ,

~A10!

wherehab5uabr ab , and 0,uab,1. Since functionsf and
gab are uniformly differentiable, we can exchange the ord
of integration and differentiation and use the property of
d function to write

I 5
1

2

d

dxE (
a51

N

(
b51

N

d~x2r a2hab2y1! f ~y1 ,r 2 , . . . ,r n!

3gab~y1 ,r 2 , . . . ,r n!r abdy1dr2 . . . drn . ~A11!

Using Eq.~A4! to change the integration variables back
y1 , . . . ,yn , we obtain Eq.~A2! and prove the theorem.

Following a similar procedure, we can prove the follow
ing extension of the theorem.

Extension:For a uniformly differentiable vector function
Gab of vector variablesy1, . . . ,yn, if the following condi-
tion is satisfied:

Gab52Gba, ~A12!

then
E (
a51

N

d~x2ya! (
b51

N

F~y1,y2, . . . ,yn!Gab~y1,y2, . . . ,yn!dy1dy2 . . . dyn

5
1

2
“• (

a51

N

(
b51

N E d~x2ya2hab!F~y1,y2, . . . ,yn!Gab~y1,y2, . . . ,yn!~yb2ya!dy1dy2 . . . dyn, ~A13!

wherehab5uab(yb2ya), and 0,uab,1.
We now use this relation to prove Eq.~2.27! in Sec. II. According to definition~2.12! we have
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n (
b51,bÞa

J

Fa
ab5E (

a51

J

(
b51

J

d~x2ya!Fa
ab~C,t !P~C,t !dC.

~A14!

We now letGab5Fa
ab , F5P, and apply Eq.~A13! to find

n (
b51,bÞa

J

Fa
ab5

1

2
“•E (

a51

J

(
b51

J

@11O~hab!#

3d~x2ya!Fa
ab~C,t !~yb2xa!P~C,t !dC.

~A15!

If the macroscopic length scale is large compared to the t
cal segment length, the effects ofhab can be neglected. With
this assumption we find Eq.~2.27! in Sec. II by multiplying
both sides of Eq.~A15! by (15)*d(x82yb)d3x8, exchang-
ing orders of integration and, using definition~2.14!. The
conditionally average forcêFa&2 is determined by

P2~x8,x!^Fa&2~x8,x!5E (
a51

J

(
b51

J

d~x2ya!d~x82yb!

3Fa
ab~C,t !P~C,t !dC. ~A16!

The procedure used in the proof above is an extension
similar result from Zhang and Rauenzahn@11# and Zhang
and Prosperetti@13#, where the result was limited to indistin
guishable particle collections. That restriction is remov
from the present proof.

APPENDIX B

In this appendix, we solve Eq.~3.21! with boundary and
initial conditions~3.23!, and study the properties of the s
lution. We assume that the displacementl is along the direc-
tion connecting the two ends of a segment. To solve
equation, we first apply a Laplace transform with respec
time t to Eq. ~3.21! and its boundary and initial conditions
Denotings as the variable corresponding tot after the trans-
formation, we have

sl̂5
,2

4t

]2l̂

]x2
, ~B1!

sl̂~,/2,s!5ûe~s!, l̂~0,s!50. ~B2!

The solution of Eq.~B1! with boundary conditions~B2! can
be written as

l̂~x,s!5
ûe~s!sinh~2xAts/, !

s sinh~Ats!
. ~B3!

The Laplace transformation of the forceN can be calculated
as

N̂~,/2,s!5k0

]l̂

]x
5

2k0

,
ûe~s!At

s
coth~Ats!. ~B4!
05180
i-

a

d

e
o

Using the convolution theorem, we have

N~,/2,t !5
2k0

, E
0

t

ue~ t8!KS t2t8

t Ddt8, ~B5!

where

KS t

t D5L21FAt

s
coth~Ats!G . ~B6!

We note that

coth~Ats!5
11exp~22Ats!

12exp~22Ats!
5@11exp~22Ats!#

3F11 (
k51

`

exp~22kAts!G
5112(

k51

`

exp~22kAts!. ~B7!

Substituting Eq.~B7! into Eq. ~B6! and then performing the
inverse Laplace transformation, one finds

KS t

t D5A t

ptF112(
k51

`

exp~2k2t/t !G . ~B8!

We now study the properties of this kernel. Let@x# be the
integer part ofx. We note that

(
k51

`

exp~2k2t/t !5E
1

`

exp~2@x#2t/t !dx. ~B9!

For x>1, we have

E
1

`

exp~2x2t/t !dx,E
1

`

exp~2@x#2t/t !dx

,E
1

`

exp@2~x21!2t/t#dx.

~B10!

Using Eq.~B9!, we can write Eq.~B10! as

E
0

`

exp~2x2t/t !dx2E
0

1

exp~2x2t/t !dx

, (
k51

`

exp~2k2t/t !,E
0

`

exp~2x2t/t !dx.

~B11!

By changing variable toh5xAt/t, we see that

E
0

`

exp~2x2t/t !dx5At

tE0

`

exp~2h2!dh5
1

2
Apt

t
~B12!

and
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E
0

1

exp~2x2t/t !dx5
1

2
Apt

t
erf~At/t !, ~B13!

where erf is the error function. With this, inequality~B11!
can be written as

1

2
Apt

t
erfc~At/t !, (

k51

`

exp~2k2t/t !,
1

2
Apt

t
,

~B14!

where efrc(x)512efr(x) is the complementary error func
tion.

We now write

KS t

t D511Kr S t

t D , ~B15!
J

s

nt

a
P

05180
where

Kr S t

t D5A t

ptF112(
k51

`

exp~2k2t/t !G21. ~B16!

Using Eq.~B14!, we obtain

A t

pt
2erfSAt

t D ,Kr S t

t D,A t

pt
, ~B17!

so that

lim
t→`

Kr S t

t D50. ~B18!
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