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A polymeric solid is modeled as a network of beads and strings. Beads in the polymer are divided into bead
groups represented by the segment end points. Based on the equation of motion for each bead in the system,
a macroscopic equation of motion for the polymer is derived. Velocity fluctuations of beads result in a pressure,
the isotropic component of the stress, in the polymer. Interaction forces transmitted through segments con-
nected to bead groups are the major source of the stress in the polymer. The tendency of segments to achieve
their minima in Helmholtz free energy results in thermal elasticity of the polymer. Compared to the time scale
of these segment interactions, other interactions among beads groups are short in time, therefore, result in a
viscous stress. The motion of an average segment is modeled as an elastic spring immersed in a viscous fluid.
The inertia of the segment is neglected because the viscous force is much larger than the inertial force. The
governing equation for the deformation of the average segment is found to be a diffusion equation representing
the balance between the viscous force and the elastic force in the segment. If the time scale of the macroscopic
deformation is short compared to that of the deformation diffusion, the application of forces at both ends
results in nonuniform deformation of the segment, which diffuses from the ends toward the center. This
diffusion leads to relaxation of the macroscopic stress which we represent by a history integral. The kernel in
the integral is asymptotic to {I for a short timet, and is asymptotic to an exponentially decaying function for
a long timet, in which t is the elapsed time from initiation of the deformation. This theoretically predicted
kernel is observed in experiments conducted at constant temperature.
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I. INTRODUCTION kinson bar experiments, require constitutive relations capable
of capturing the dynamical behavior of the material. Knowl-
A polymeric solid is regarded as a network of polymeredge of the transport coefficients, such as viscosities, elas-
chains consisting of chain segments and segment end pointicities, and diffusion coefficients, computed by integrating
Classical network theory neglects interactions of the chairthe time correlations throughout the entire history of motion,
segments with their surrounding medium, and the segmerlthough important building blocks, is not sufficient for this
end points are regarded as permanent. To consider stress #pose. This paper introduces a method to relate the mac-
laxation, classical network theory is typically extended inroscopic constitutive relations to the polymer chain motions
two ways. First is the transient network model. In such aat the molecular level. In this way, the method introduced in
model, junctions can be formed and broKédh and the rate the present paper can take advantages of the physical under-
of the annihilation of the junction points is related to the standing of polymers gained from the study of physical
stress relaxation in the material. The second approach is tchemistry.
consider the interactions of the polymer segments with their As a simple starting point, we simplify the generalized
surrounding medium. The surrounding medium consists of.angevin equation of motion for polymer chaif3]. We
side groups, dangling chains, small chain fragments, plastireglect inertial term in the equation and simplify the memory
cizer molecules, and chains from other segments. These ifkkernel as aé function in time, because the time scale of
teractions were modeled as entanglement of chains in rept@aterchain interactions in the polymer is short compared to
tion models[2]. In a separate development, Schwei@d|  the macroscopic time scale. As a result of this simplification,
used a generalized Langevin-equation apprda¢to derive  polymer gel can be modeled as a network of interconnected
the equation of motion of a polymer chain. Advantages ofsprings immersed in a viscous fluid. A similar physical
Schweizer’s approach includes the rigorous, at least conceprodel was used by Gurtovenko and Goflfj to study poly-
tually, derivation of the equation of motion for polymer meric solids. These authors divide the stress in the polymeric
chains from fundamental principles such as the Liouvillesolid into three components, the elastic component resulting
theorem in statistical mechanics. Based on the generalizedom the thermoelasticity of the chain segments, the viscous
Langevin equations, many transport coefficients, such as ditomponent resulting from the viscosity of the surrounding
fusivity and viscosity, were calculated through the study ofmedium, and the component accounting for interactions be-
the corresponding time-correlation functiofsee, e.g., Ref. tween chains and the viscous medium. The network was as-
[6]). While these developments in the field of physical chem-sumed to be in a cubic form and the strain along a polymer
istry significantly advanced our understandings of the behavsegment was assumed to be uniform. The last assumption is
ior of polymers, recent applications of polymeric material,actually present in all network theories about constitutive
especially for high-strain-rate applications, such as in Hop+elations published in the literature except in a recent work
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by Harstadet al. [8]. This assumption implies that the seg- this paper also excludes topological effects related to
ment relaxation time- is small compared to the time scale of changes in end points, such as may result from aging. The
the mean motion. In other words, the strain rate is smalkffects of changes in segment end points and tie points need
compared to K. As we shall see in this paper, the relaxationto be considered as the theory undergoes further develop-
time 7 can be about 450 to 1000 s for some polymers. Therements and refinements.
fore the effects of nonuniform segment deformation can be Under these approximations, macroscopic equations are
significant for those polymers. derived by averaging over the equation of motion for the
In the present paper, we examine the effects of nonunibead groups. Stress in the polymer system is expressed as
form deformation of the polymer segments, as first describedontributions from three different physical origins. One of
by Harstacet al.[8]. Our approach differs from theirs in that them comes from the random fluctuations of the beads in the
here we accomplish the multichain homogenization at thgolymer chains and is modeled as an isotropic pressure pro-
beginning of the derivation, whereas they developed a singlgortional to the absolute temperature of the polymer under
chain description which then requires homogenization. Inhe assumption that thermal relaxation of an individual bead
both approaches the effects of nonequilibrium arise froms fast compared to the macroscopic strain. Interactions
nonuniformity of chgin deformations. Becausg the strain a”‘ihrough segments connected to bead groups is another con-
therefore the force in the segment are not uniform, we musfipytor to the stress. Because the segments are considered as
first determine the appropriate expression connecting thge manent, the typical time scale of these interactions is long

maqroscopic stress and local forces in th? polymer SEIMENtEampared to that of other interactions among bead groups.
Typically there are t.WO app_roaches to derive the MAacroscoplgy, tendency of the segments to achieve their minima of
stresses from the Interaction forces at the molecular level, elmholtz free energies results in the thermal elasticity of
Thg first approgch IS to study the average force across ape segments. Interactions between the beads in a segment
arbitrary plane in the polymer as described in the classica )

book by Birdet al. [9]. The second approach, which was first and their surrounding beads are modeled as viscous frictions
used by Irving and Kirkwood10] in the der,ivation of the Decause of the time scale difference. An average segment is

Navier-Stokes equation from the statistical mechanics, is diodeled as an elastic spring immersed in a viscous fluid.

rectly related to the derivation of momentum equations of théXifferent from the similar model used by Gurtovenko and
system. This approach has been generalized to consider egotlib [7], we consider nonuniform deformation within the
ergy nonconserved systems such as particle interactions RPlymer segments. Other interactions among bead groups,
granular and multiphase flows by Zhang and Rauenzahfuch as friction among beads belonging to different bead
[11,12, and Zhang and Prosperdtti3]. In the approach itis groups, furnish another contribution to the macroscopic
seen that the existence of stress relies on the action-angtress and result in a viscous component of the stress due to
reaction principle about the forces between an interactinghe transient nature of these interactions.
pair of particles. When we consider forces acting on both Because the motion of a polymer segment is dominated
ends of a polymer segment, the action-and-reaction principlby the viscous force, the inertia of the elastic spring is ne-
does not apply directly, so that an additional generalizatiorglected[3,4]. For a section of the average polymer segment,
of the approach of Irving and Kirkwood is needed before thethe difference in elastic forces at both ends is balanced by the
stress expression can be derived rigorously. This generalizaiscous friction between the section and its surrounding me-
tion is also useful for systems of distinguishable particlesdium. In this way the deformation of the spring satisfies a
This is explained in the following section and in Appendix A, diffusion equation. This equation is solved in Sec. Ill. We
in the process of derivation of our macroscopic equations. then assume that the relaxation time of a segment is much
In the derivation of macroscopic equations, we introducdonger than the time needed to propagate stress waves
a concept of bead groups, which contain one end point othrough the length of the polymer segment. Under this as-
polymer chains, together with the segments attached to th&mption an average polymer segment, the elastic spring,
end point. Except for the loose end of a dangling chain, artan be thought of being compresged pulled at both ends
end point is the position where chemical bonding joinsat the same time. Strain of the average segment then diffuses
chains strongly together. A single polymer chain may followtoward the center of the segment. This diffusion of the strain
a tortuous pathway among its neighbor with multiple tieleads to the history integral in the constitutive relation of the
points that are permanent in the sense that one chain cannw@terial. For a short time, the kernel in the history integral is
be pulled through another. In contrast to the end point of thgroportional to the inverse square root of the time from the
segment, these tie points can slide along a chain, contributinigitiation of deformation (1), while for a long time, the
frictional and elastic forces. The contributions of these tiekernel approaches a decaying exponential. This implies sig-
points to the effective elasticity and viscosity are not negli-nificant stiffening for a high strain rate motion. For a low
gible. In our approach to the problem, we represent the polystrain rate motion, the kernel can be approximated by a Max-
mer configuration by segments of each total chain and regandell model.
a tie point as if it were the end point of a segment. One The relaxation time of an average segment is related to
aspect of the approximation introduced in this paper is thathe length of the segment. The longer the segment is, the
no distinction is made between the tie points and the endbnger is the relaxation time. The effects of segment length
points. We acknowledge that tie points are more mobile thawlistribution are studied in Sec. IV.
end points of a polymer chain. The approach we are taking in In Sec. V, we show experimental evidence of the theoreti-
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cally predicted kernel, especially the\i/part for short where LU is the mass of bead,; andf”= is the force

times. acting on bead,z, other than the forc&” andf”* from the
segment end pointa and 5.
Il. DYNAMICS OF THE NETWORK Let F¥# andF2* be the symmetric and asymmetric parts

We consider a solid polymer in which the polymer Chainsof the interaction forces at both ends of the segment, defined

can be represented by strings and beads. Local strong inte?>
actions between polymer chains at isolated points are repre- 1 1
sented by junctions. A polymer segment is defined as a part Fg‘ﬁzz(f“ﬂﬂﬁ“), Fgﬁzi(f“ﬂ—fﬂ“). 2.7
of polymer chain that ends either at a junction point or at a
free end. Ley™),@=1,2,... ], be the positions of the Seg- \ith these definitions. we have
ment end points and ’
FeP=pBe FeB=_FBe  and f*P=FF+F2k,
T={yty2, ... yD (2.1 soose é Y

be the set of the positions of all segment end points, where ysing Eqgs.(2.5—(2.8), one finds

is the total number of segment end points in the system. This

set contains not only junction points but also segment endq 1 Nag J

points belonging to dangling chains and the end points of ;| MW"+ 5 > 2_ m,, W7k | =FF _E Fa?,
stray chains. B#a vap=1 p=1lpta

We denotey?«5 to be the position of beag,; between 2.9
segment end points and 8. Let where
Sap={y" Y2, ... yNes} (2.2 1 Nog
3 Fe=fet = > > fras, (2.10
be the set of bead positions of the segment between @nds 2 p-Th+a Yap=1

andg, in which N,z is the number of beads in the segment . e .
excluding the end beads. Note i, is an empty set it The forceF* defined in Eq.(2.10 and the momentum de-

and 8 do not belong to the same segment or there is no bea®d on the left side of2.9) are summed over all beads in
in the string connected to both end pointsand 8. The the segments that have an end poinafThe mathematical

topological structure of the polymer system is uniquely deStructure of these equations leads us to the definition of bead

termined by the collection of sets consisting of seand all ~ 9roups. For each point® in set J of end points, we can
setsS, ;. define a grouB, of beads in the polymer system. A bead

Let W be the set of velocitiess of beads in the system belongs to grouB,, if the segment that the bead belongs to
has an end poing“. The mass of this bead group is

w={wtw?, ... wN}, (2.3 5 N
1 op
where N is the total number of beads in the system. The m§=ma+§ 72 2 My s (211
. . . . B=1B+a yaﬁfl
dynamics of the system is uniquely determined by polymer
configuration These groups are not mutually exclusive. A bead in a seg-
ment belongs to two such groups since a segment always has
c=ax]1 SapXW, (2.4y  two end points, and its mass is equally distributed to both

groups it belongs. A bead at a segment end point belongs to
only one group and its mass is owned entirely by that group
s expressed in EQR.11). In the following, we shall use this
concept of bead groups to derived macroscopic equations
and closure relations.

The average of a generic quantg$f(C,t) associated with
a segment end point is

and the equations of motion for beads in the polymer, wher
the productl is over all setsS,;.

Let f*# be the force acting on segment end painfrom
the segment connecting end poirtsand 8, andf® be the
other force acting on the segment end paintThe equation
of motion for segment end poini can be written as

J
@ J 7 _ N\ N
madgvt - S qebie 29 DGO = | 2 dx-ygU(CHP(C,HAC,

pripze (2.12

wherem, is the mass of bead. The equation of motion for  \yherep((,t) is the probability density function for polymer
the beads between segment end pointnd 8 can be writ-  configurationC at timet andn is the number density of the

ten as segment end points defined by takig§=g=1 in the Eq.
Nop dwYes Nog (2.12. The probabilityP(C,t) in Eq. (2.12 normalizes to 1;
2 m, = _faB_fBay E fres,  (2.6) that is, its integral over all possible configurations is 1. The
Yap=1 P dt Yap=1 summation in Eq(2.12 sums over all segment end points.
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The pair distribution functiorP,(x’,x) for having a seg-

ment end point at positior and another end point at is

P,(X',X)= 2 E

a=1 B=

S(x—y*) 8(x' —yP)P(C,t)dC.
(2.13

The averag€g),(x’,x), conditional on the requirement that
each of the pointx andx’ is occupied by a segment end

point, is

J J
P (@2 0= 2 2, | S(x—y")

X 8(x" —yP)g*(C,t)P(C,t)dC.
(2.149

By taking g¢ as the momentum of bead gro@, ,

J Neg

(2.195

1
gY=mw+ 5

m, w7,
2 p=Th+a yog=1 P

we can express the mass flux as

J
p(X,t)U(x,t)=ng= azl S(x—y®)

1
X| mw*+ = E E m, Wyaﬁ
2 p=Th+a yop-1
X P(C,t)dC, (2.16
wherep(x,t) is the mass density
J
px,t)= [ X sx—yHmgP(Ctdc.  (2.17)
a=1

Using a Liouville equation for the probability distribution
function P(C,t), one can derive a transport equation for
quantityg® as Eq.(8) in the paper by Zhang and Rauenzahn

[11] or EQ.(2.40 in the paper by Zhang and Prospergti].

PHYSICAL REVIEW E 66, 051806 (2002

o"pu )

——+V-(pU-w)=V-e"+nF*+n > F,
ot B=1B+a
(2.20
where
J —_—
- f 2 5<x—ya>{ma(w“—w>
1 Nog -
— m mﬂhﬂ_vv
2 p=TB+#a yop-1 7“/3( )
X (W¥—w)P(C,t)dC (2.20)

is a stress due to velocity fluctuations of the beads in the

system. In principle, the average velocitigsand U are not
the same. Using Ed2.11) we can write the difference as

26<xy E Em

B=Th+a ypp-1

X (WYas—w®)P(C,t)dC.

p(u— W)—

(2.22

By decomposingnyaﬁ(wyaﬁ—w“) into mean and fluctuating
parts, expanding both the mean parrm}faﬁ(wyaﬂ—w“) and

the probability P(C,t) in Taylor series abouk, and then
carrying out the integral, we can prove that E2.22) is of
order€?/L.2, where( is the typical segment length amdis

an appropriate macroscopic length scale. The lower-order
terms vanish because of the symmetry of the integration do-
main. If the macroscopic length scale is large compared to
the molecular scale, this velocity differen¢®.22 can be
neglected. For this reason, we do not further distinguish ve-

locities u andw in the following text.

According to the definition(2.10 of F¢, the forces re-
sulted from the interaction of the beads within the same
group sum to zero because of the action and reaction prin-
ciple. ThereforeF“ is a result of interaction between differ-
ent bead groups represented by their segment end points and
can be written as

By takingg“=myg, the transport equation becomes the con- J
tinuit a_ @
y equation. Fo= 72 Fgﬁ’ (2.23
B=la#pB

p
t—l—V (pW) 0,

3 (2.18

where

J
p(x,t)vv(x,t)zf 21 S(x—y*)meweP(C,t)dC,
(2.19

wherngﬁ is the interaction force between bead grols
andBg. If there is a segment connecting this pair of bead
groups, the interaction ford&” transmitted through the seg-
ment is not included ifFg” . The group interaction force;”
satisfies Eq(A12) in Appendix A. According to the exten—
sion of the theorem proven in Appendix A, we have

nFe=V. o' (2.24)

is the average momentum of segment end points, from which

the average veIocityV(x,t) can be determined.

For g« defined in Eq.(2.15), the transport equation be-
comes the averaged momentum equation for the material.

l 2 g 1Ny 1Ny ’
(2.23
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where(F,), is the average group interaction force betweemecting them. The third stres€ represents the interaction of

groups represented by segment end points’andx. We  bead groups through segments connecting them. The ap-

note that the forcéFg), represents the interactions among proach used in the derivation of the macroscopic equations

bead groups not transmitted through segments connectin@.18 and(2.28 for the polymer system is an extension of a

them. These interactions are transient while the connectiogimilar approach used by Zhang and RauenZdhril2 and

between bead groups are considered permanent. Therefoghang and Prosperetfil3] in the derivation of averaged

the time scale of the variation of the for¢&g), is short  equations for granular and two phase flows.

compared to that of forc&# transmitted through a segment  In the derivation of the momentum equatith28, there

connecting the pair of bead groups. This time scale differis an assumption that the typical polymer segment is much

ence enable us to model for¢gy), as a viscous force as longer than a monomer and is much shorter than the macro-

shown in the following section. We assume that the averagecopic length scale. To proceed further beyond this point,

force acting on a bead is proportional to the relative velocityooth intersegment and intrasegment interaction models have

between the bead and its surroundings. This assumption ete be introduced.

ables us to reprove E@2.24 and to calculate the stregs’

explicitly. Ill. CLOSURE RELATIONS FOR THE STRESSES

The force term defined in the last term of the right side of R

Eqg.(2.20 can also be expressed as the divergence of a stress A. Closure for o

tensor after the use of the theorem extension proven in Ap- According to definition(2.21), the stresso® is propor-

pendix A. tional to the correlation between the velocities of the beads
. in the segment and the velocities at the segment end points.

For a long segment, only those beads close to an end point
n 2 F;’ﬁ:V -0, (2.26 have velocities correlated to the velocity at the end point and

pibza have significant contributions to the stress. Therefore, only a
1 small amount of mass in the polymer contributeat® and
o(xt)= EJ (Fa)a(X' X, 1) (X' —X)Po(x" ,x,t)dx’, this stress is small compared to the stress which is re-
lated to thermal motions of all beads in the segments.
(2.27) Under the assumption of thermal equilibrium, the stress

where (F.),(x',x,t) is the asymmetric part of the average qR is proportional to the kinetic energy of the thermal mo-
interaction force between the two end poistandx’ of a tion and therefore propo_rtlonal to the a}bsolute temperakure
segment. If the two end points do not belong to the samgf th_e system. I theFe IS a pe_rturbatlon about the thermal
segment, the force is zero. Therefore, only those pairs cone-qu'“b”um’ the velocity fluctuations of the beads cause mo-
nected by segments have contributions to the integral. Tﬁjlent”m .exchange across streamlmes of the mean flow as in
calculate this stress, we need to know the average forces € Igneh_c theor_y of a gaBL5]_. Th|s effect.can pe modeled_
as viscosity. While this effect is important in a dilute gas, this

V{scosity is small compared to the viscosity caused by fric-

an ensemble average over all segments with end points 4 amona the polvmer chains. Therefore. we can approxi-
positionsx andx’. The average behavior of such segments g oy ! ! PP

can be modeled as an elastic spring immersed in a viscodpb""teI the strese™ S|mplydbyha %ress.ure ?rcr)]portlonal to th%
fluid. The elasticity comes form the tendency of the averagé"l S0 ute ;]grrr]]pgratur‘é an t Ie eﬂs'tz 0 t edsefgmgnt elg
segment to achieve the minimum in Helmholtz free energypz()'lnts’ which is proportional to the density defined in Eq.
and the viscosity comes from interactions of the beads in th& 17
segment with the surroundi_ng beads not belonging to the oR=—CppTl, (3.1)
same segment. In the following section, we calculate the av-
erage force between a segment and then use(ER7) to  whereCg is a coefficient and is the identity tensor. In a
calculate this stress. solid material, this stress is offset by elasticity of the mate-

With Egs.(2.26) and(2.24), and neglecting the difference rial, since the strain of a material is defined to be zero at its
betweenw and a, we can write the momentum equation equilibrium. Therefore, this pressure should be written as
(2.20 in the following conservation form: N

R
oo o oR—l+tr(8)tr(£)l, (3.2
—+V-(pu-u)=V-(c+ o'+ o). (2.28

at whereNg=CgpT.
With this momentum equation, we now see that the total
stress in the polymer system contains three parts. The first
part o results from velocity fluctuations of the beads related As mentioned in Sec. II, the stress’ represents interac-
to thermal motion. Both the second and the third parts reptions of beads in one group with beads in a different group.
resent interactions between bead groups. The secondtérm The dynamic nature of a polymer chain makes these interac-
represents the interaction between polymer segments belontiens transient in time; and the time scale of this interaction
ing to different bead groups but not through segments conis small compared to that of the interaction between bead

B. Closure for ¢
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groups caused by a segment connecting them, because the C; J

segments are considered permanent between the two bead a/=—| > > s(x—y*+ h“ﬁ)maﬁ
groups. The force acting on beadn a segmentincluding a 8J) 14

segment end poiptan be modeled as viscous friction and a

T(vB) —L(ve B_ o
random Brownian forcé® with zero meari3,4,9,16, Xu(y?) —u(yH)Iy"=y9)P(70)d7, (3.6

fr=—Cim,[w'—v(y")]+fp, (3.3 Where|h“ﬁ|§€. In proving relation(2.24, we explicitly
used the action-and-reaction principle. This principle is im-
plicitly contained in Eq.(3.3 because the viscous force is
whereC;y is a friction coefficient and/(y”) is the mean ve- expressed in terms of relative velocity. In E@.25, the
locity of the surrounding medium experienced by bead force(Fg), is the average interaction force between a pair of
Thus 1C; has the dimension of time. This is the relaxationbead groups. Even if these two bead groups are not con-
time of the beady in the surrounding viscous medium. This nected by a segment, the force is not necessarily zero. This
Langevin force is the starting point for a single-chain modelforce is modeled as friction acting on the beads as in Eq.
as derived by Harstaet al. [8]. For polymers such as poly- (3.3). Therefore, in Eq(3.6) the integral is over all segments.
isobutylene, at 217°C, if we take the bead size2.0 A, the  If the segment end points and 3 are not connected by a
bead mass ofn, =56 g/mol=9.3x 10> g, and the viscos- common segmentn,z, and thus the integrand, vanishes.
ity of the melt asu=10° P as in the book by Rodrigu¢7], Using Taylors expansion to calculatéy?) —u(y®) and

the friction coefficient can be estimated using the Stokeq;(eepmg only the first term, we can write the stre€sas
drag law asC;=6mua/m=4.1x10?°s % Although the

Stokes drag law is only a rough approximation, the order of c J 3
magnitude ofC; is expected to be meaningful. sz—fva(x) > > S(X—y* )M,
We assume that a typical polymer segment length is short 8 a=1p=1
compared to the macroscopic length scéle., £/L<1). X (yB—y*) (YA —y*)P(J)d T, 37

With this assumption the time difference for a perturbation to

reach both _en(_:is of the segment is _negligiblc_a compared to thﬁt this point it is interesting to note that we only used the
macroscopic time scale. The velocity experienced by bead asymmetry ofv, in deriving ¢V, and the actual distribution

can be written as of v, between the two segment end points has no effect on
the stressr. In the following, we show that the distribution
1 _ of v, along the average segment affects the steelss
v(y?)= E[u(yﬁ)+u(y“)]+v,(y7), (3.9 We note that the integrand in E€B3.7) is a symmetric
tensor, therefore, only the symmetric part of the velocity gra-
dient has a contribution te". With this, we have

wherev, is an asymmetry function about the segment center

representing the difference between the mean velocity expe- o'=p ¢, (3.9
rienced by a particle af” and the average of the mean ve-
locities experienced at both ends of the segment. wheree is the rate of strain defined by

Using Eq.(3.3), and definitiong2.16) and(2.17), we can

write the second term on the right side of £8.20 as 1 L ~

e=S[Vi+(VI)], 3.9
_C J J
nF*= Zf > D (XYM, and u is the symmetric viscosity tensor
a=1 =1
5 _ c NN
X[Uy")-uymIP(ZDdT, (35 uixt) = o f 3 S, acyom.
where m,; denotes the total mass of segments with end X(YP—y")(yP—y")P(71dJ.  (3.10

points « and 8 and P(7,t) is the probability distribution

function of segment end points. This probability distribution This integral is over all segments with an end pointxat

function can be obtained by integrating over all degrees oMultiplying both sides of Eq.(3.10 by 1=/[d&(x+r

freedom inC except those in7. In the derivation of this —yA) d® and exchanging the order of integration, we have

equation, we have integrated over all degrees of freedoms

other than the positions of the segment end points, and used Cs 3

the asymmetry property of. . m(x,t)= §f ms(x,r, O Py(r,x,t)d>,  (3.11)
Letting G,s=m, g u(y?)—u(y®)] in Eqg. (A12), and us-

ing the theorem in Appendix A, we obtain E@.24) again; where mg is the average segment mass betwaeand x

that is, the forcenF* can be expressed by the divergence of+r, andPg(r,x,t) is the probability distribution function of

a stress. The stress is finding a segment with end points atandx+r,
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o where N is the displacement relative to the center of the
Ps(r,x,t)= E E S(X—y%) polymer segment anki, is the elasticity coefficient propor-
a=1p=1 tional to absolute temperatufie
X 8(x+ 1=y xopP(T AT, (312 ko= CkT/€=Ck Tpg/m, (3.17)

where ;=1 if end pointse and 8 are connected by a whereC, is a coefficientms is the mass of the segment, and

segment and, ;=0 otherwise. k=1.3807x 10 22 J/K is the Boltzmann constant.

. If We assume that the polymer conﬂgu_ratlon aroumnt. Using EQ.(3.16 in the frame fixed at the segment center,
isotropic, that is, bothmg and P¢ are spherically symmetric the momentum equation can be written as

aboutx, we can carry out the angular integral contained in

Eqg. (3.11) and the viscosity tensor can be represented by a P
scalaru and Eq.(3.8) becomes koﬁ—cfps(u—v)zo. (3.18
X
. a
o'=pe, u(x,t)= chf mg(r,x,H)r4Pg(r,x,t)dr. The velocities in this equation are the velocities relative to

the segment center. Symmetry about the average segment
and about the center requires that both velocitiesxdv be

asymmetrical about the mass center. We assume that the av-
C. Closure for o” erage segment has no shearing and bending strength and de-

Stresso” is the most important stress because it repreformation of the segment is along the axis connecfifignd
sents the force transmitted through polymer segments, the¢’. These velocities represent the mean deformation rates of
backbone of the polymer network. To calculate this streséh® average segment and its surroundings. We assume that
using Eq.(2.27, we need to study the averaged equation ofthese deformation velocities are linearly related, or
motion of a polymer segment. Under the assumptions that o
the interaction force between a polymer segment and its sur- u-v=Cu, 0<C<1, (3.19

rounding medium fluctuates very rapidly in time comparedyhereC is a constant along the segment. In this way, we see

to the bulk motion of the polymer and that such interactionsnat the last term of Eq3.18 represents the resistance to the
are statistically isotropic, the equation of motion for a beadsegment deformation from its surroundings.

(3.13

in a polymer segment can be written [, As a first approximation, we neglect nonlinear effects and
write
dw?es
m7a3—2: _VW(rYaﬁ)_ nyaﬁ(w7aﬁ_v)+|:7aﬂ, I
dt u=—. (3.20
(3.19 ot
where W is the intrasegment potential of the mean force,With these approximations, the equation for the displacement
nY«8 is the friction constant, anB”«s is a random force. field can be written as
Upon the ensemble average over all possible polymer seg-
ments connecting the end pointsand 8, we find the aver- 29 €2 9\
aged equation of motion for the segments. Gt AT gy’ (3.21
dpsu N ;
%: &—X—CfPS(U—V), (3.15 where( is the length of the segment and

€2p,CiC ¢3ms,C;C
whereN is the average internal force in the segment, and the ™" T4k,  4CKkT - (3.22
x axis is along the line connecting’ andy?.

In this equation, the time scale on the left side is theFor a segment consisting of 100 polyisobutylene monomers,
macroscopic time scale, while the relaxation time scale ishe segment length can be estimated as 400 A, and the relax-
1/C¢, which is much smaller than the macroscopic timeation time at temperature 217°C can be estimated to be
scale, as mentioned in the preceding subsection. Therefoeghout 450 s if we assume the coefficig®tC,=0.5. Al-
the effect of inertia, that is, the left side of .15, can be  though at this temperature polyisobutylene is in the melt
neglected. form, the segment relaxation time is still meaningful. For

The effect of the thermal motion represented by thepolyisobutylene gel, the viscosity is expected to be much
Brownian force in Eq.(3.3), and the potential energy be- |arger, and therefore the segment relaxation time is expected
tween neighboring beads, are represent by the Helmholt@ be much longer. This rough estimation of segment relax-
free energy. The average forbx,t) at a point in the seg- ation time suggests that even for fairly small macroscopic

ment can be calculated from the free enefgyas strain rate, say 10° s 1, the effects of nonuniform deforma-
tion could be significant.
., OA The boundary and initial conditions for this equation can
N=Kkg—, (3.16 ;
X be written as
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u(€/2)=ug(t), AOt)=A(x,00=0,  (3.23 1

Ui]jzikoqu(t)f NpNgMin;Ps(r,x,t)r3drd
whereug(t) is the average velocity relative to the mass cen-
ter of the segment. Under the assumption that the average
position of the segment forms a straight line connecting both
segment end points, and that the forideacts along the
straight line, the forceN acting on the end of the segment
can be obtained by solving E@3.21) with boundary and
initial conditions(3.23. Detailed procedure of solving this
equation is described in Appendix B. The magnitude of the

1
+§k0fogpq(t—t')

!

t
X fnpnqnian,(—)r3PS(rn,x,t)drdQ dt’,

7(r)

(3.30

force is calculated as

2kg
N(€/2t)= A

ft t’ dt'-f—JAt t'K(ﬂ)dt'
UGt + | gt K| ],
(3.24)

or equivalently(by changing integration variablg=t—t’
and then denoting’ ast’)

2ko| ft t t’
N(€/2t)= — fue(t’)dt’+f Ug(t—t"K,| —|dt’|,
€ 0 0 T
(3.25
where
Kt—\/T12§: K2rt) | —1. (3.2
2= E+k=lexp(— mit)|—1. (3.26

As proven in Appendix B, the kern&l, goes to zero as time
goes to infinity. This kernel describes fading memory of the

segments. With this result, the forcés;), and(F,), aver-

where( is the solid angle. If we assume that the pair distri-
bution is spherically symmetric, we can carry out the angular
integral to find

o’ =\g[tr(e)l +2&]+ )\,

><f{tr[;s(t—t’)y+2é(t—t’)}K(t')dt',
0

aged over all the segments with the same segment end poiritssing Eq.(B18) in Appendix B, we see that

in the ensemble can be written as

(Fg)2=0 and (Fg),=N(£/2}). (3.2

(3.3)
where
2
)\Ozl—gkoj (3P x t)dr (3.32
and
f K <L>r3P (r,x,t)dr
— "\ 7(r) sih
K, (x,t)= (3.33
fr3PS(r,x,t)dr
limK,(x,t)=0. (3.39

t—oo

If points x and x+r are not connected by a segment, theRelaxation of the Kerné?r represents the. fading memory of
force between them is considered zero. With such condith® Polymer material. Equatiof8.33 implies that the mac-

tional average the stress’ described in Eq(2.27 can be
written as

o(x,t)= %f N(%,t)rPs(r,x,t)de’r. (3.28

roscopic relaxation is determined by the distribution of poly-
mer segment length. To understand the properties of the ker-
nel K, , we first study the properties of the kerri¢| for a
fixed segment length with a fixed relaxation time. Using Eq.
(B17), we can show that, as approaches zeroK, ap-
proachesyr/wt. The functionK, is plotted in Fig. 1. As
shown in Fig. 1, a good approximation Kf can be written

We now assume that the motion of the average segment is;

affine, so that the average velocity is related to the mac-

roscopic stain rate as

Ug(t) = §(é~n)-n, (3.29

t V7l (mt)—erf({/7/t) if t<0.15r
Kr —|= —t/ . (3.33
T Ae Y7 otherwise,

whereA~2.00 andr,~0.101r. This implies that, at the ex-
ponential decay region &, , the relaxation time of the ex-

wheren=r/r. We note that the relaxation time defined in Ponential decay is about an order of magnitude smaller than

Eqg. (3.22 is a function of the segment length=r. Substi-
tuting Eq. (3.29 into Eg. (3.25 and then into Eq(3.28),
leads to

T.

Forﬁ, using Eq.(B17), we can show for any segment
length distribution,
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lim K,(x,t)yt=C,
t—0

(3.39

whereC is a positive number. In other words, the kerigl
is proportional to 1{'t for a small timet.

The relaxation timer in the history integrals is assumed
to be constant during the deformation from time Ottdn
many polymers, the friction coefficier@@;, thus the relax-
ation time 7, is sensitive to temperature. The heat produce

during the deformation could result in a temperature increas(ﬁ
in the polymer, especially in the cases of high-strain-raté\|€€

PHYSICAL REVIEW &6, 051806 (2002

FIG. 2. Behavior of average kernel in a system with bimodal
segment length distribution. The long to short segment length ratio
is 3.0 and the long segment to short segment volume ratio is 2.4
x 1072,

Nt
Nyls
Nt
Nyts

K, (t/7g)+

Kr(t/T()

K, (t) 4.2

1+

here 7, and 7, are the relaxation times for the short and
ng segments calculated using E¢3.22. The ratio
3/Ns€2 can be regarded as the volume ratio of the two

motions. The effects of temperature change are not considlifferent segments. In Fig. 2, we show the variation?@(t_)
ered in the present paper and are a subject of further raising€,/¢s=3 andN,/Ns=9x10"*, with a corresponding

search.

IV. EFFECTS OF SEGMENT LENGTH DISTRIBUTION

In a polymer system the segment length is usually widely,
n

dispersed and so are the relaxation times for the segme
according to Eq(3.22. To understand basic effects of the
segment length distribution, we first study a bimodal distri-
bution with short segment length, and long segment length
€, . For this case the probability distribution of segmeRts

takes the following form:

N,
w2

Ns

2
w s

Py(r,xt)= 2 5(r—€s)+4 S(r—+=,) |n(x,t),

4.1

wheren(x,t) is the number density of segment end points

long segment to short segment volume ratio 082149 2. In
this figure, it is shown that, for a very short timg £,<0.1
in the figure the average kernel behaves like/tL/After that
(0.1<t/74<0.5) the kernel behaves like an exponential with
the relaxation time controlled by the short segments. After a
ransition period {/ 7s>1), the kernel behaves like exponen-
tral again with the relaxation time controlled by the long
segments. Even though, in the example plotted in Fig. 2, the
volume ratio of long segments is small (X240 ?) com-
pared to the short one, long segments still control the long
relaxation time.

In the sense of a generalized distribution, we choose a set
of segment lengthg;, and expand the probability distribu-
tion Pg as

N;
4t

Ps(r,x,t):n(x,t)Zl S(r—1¢;), 4.3

2
i

while N, and Ny are, respectively, the average numbers ofwhereN; is the average number of segments with length

long and short segments connected to the pairdsing Eq.
(3.33, the average kernel can be calculated as

connected to the segment end poiniWith expansion4.3),
we calculated
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. o The derivation of expressions for stresgesando” have
Kr(t)zz BiK, (t/ 7)), (4.9 been based on the assumption of small deformations so that
=1 the pair distribution function is spherically symmetric. We
have also dropped the nonlinear effect offrom oR. As
mentioned in Sec. llI\g is small compared ta ., so that
for many practical purpose,r can be neglected. As a con-
sequence of this, this model predicts that the Poisson’s ratio
is about 0.25 for small deformations.

where

N;€; -
Bi= : ;1 Bi=1, (4.5

izl N;€;
V. COMPARISON WITH EXPERIMENTS

andr; is the rela?<ation time corresponding to segment length Experiments described in this paper were performed inde-
€i calculated using Eq3.29. . ) pendently from the theoretical development of this paper.
For practical problems, not all terms in E@.4) are im-  The gpecimen was a nitroplasticized estane cylinder, 7.8 mm
portant; only those terms with relaxation times of the samey, pejght and 7.6 mm in diameter. Both ends of the specimen
order of magnitude as the time scale of each problem argere well |ubricated to ensure zero lateral stress during a
important. For a term with small relaxation time compared toyjaxjal compression in the axial direction of the cylinder.
the problem time scale, the kernel can be approximated ashe experiment was conducted at room temperature on an
4 function in time, and the strain rate can be treated as §17s-810 hydraulic testing machine. The largest strain rate
constant during the kernel relaxation time and thus can b, ihe compression was 3@L0 2 s~ 1. At such strain rates
taken out from the history integrals. Therefore, such a term ighe viscous stress and temperature change due to heat gen-

nearly proportional to the strain rate at a giv_en time, and caRation can be neglected, and the stri@s6) can be written
be modeled as a viscous term. The terms in Bg)) asso- g

ciated with large relaxation times compared to the problem

time scale have a more complicated behavior since they con- t

tain the fast relaxation parts, the parts proportional tgt 1/ U(t)ZEef(t)JrEef e(t—t")Ke(t")dt’, (5.9
for a short time, and slow relaxation parts for latg€he fast 0

relaxation part in the history integral, as mentioned above\’/vhereEe=5)\e/2 is the effective Young’s modulus.

can be treated as a viscous part. For the slow relaxation part, In a compress-and-hold experiment, if the duration of the

in the time scale of the practical problem, the kernel can be . . .
. . ompression motion is short compared to the relaxation time,
treated as a constant, and pulled out from the history integra] ; s
he strain rate can be approximated as

In this way the only thing left in the history integral is the
strain rate, which can be integrated to be a strain. Therefore .
the slow relaxation part behaves as an elastic term during the e=ed(t). (5.2
time scale of the problem. As a consequence of this, depenq_-he stress in this case can then be written as

ing on the range of time scales of a problem, only a few

terms in Eq(4.4) are significant. For a practical problem, we
then combine the terms treated as a viscous strees with
the viscous stress frone’, and write the total stress

= 0"+ 0"+ ¢’ in the polymer system as

o(t)=0[1+Kg(t)], oge=Ece. (5.3

The time dependent stresqt) is measured in the experi-
ment. SinceK, vanishes as time becomes large in E2334),
. the stressr, is taken to be the stresgt) at a sufficient long
o= (Art Ne)U(€)l +2Nce+ peetNe time when the change of its value is not significant. The
t _ kernelK, can then be calculated using the measured stress
X f {trle(t—t")]1+2e(t—t")}K(t')dt’, (4.6)  o(t). The results are shown in Fig. 3. The experimental data
0 can be fitted well using one term &, in Eq. (4.7).

where\ o(>\,) is the apparent Lameoefficient containing Ko(t)=aK, (t/7), a=0.1, 7=1100 s. (5.4
effects of the kernels in Eq4.4) associated with long relax- € ' ' '
ation times,u. is the apparent viscosity containing effects of |t js interesting to note that, in this case the relaxation time
the terms in Eq(4.4) associated with short relaxation time o, the long decay, the exponential part, can be calculated as
and T,~111.1 s, using definitior{3.35. This time scale coin-
" Ny - cides with the time scale of this experiment, which is not
_ __Aopi accidental. As mentioned in Sec. 4, the complete kernel can
KE(t)_iZl aiki(Um), = Ne >0, and ,Zl %<1 be written as the summation of a serieskgfwith different
4.7 relaxation times, and only those terms with the relaxation
times close to the time scales of the problem are significant.
The terms contained in summati¢h7) belong to a subset of To further illustrate the 4/t behavior of the kernel for
the terms contained if4.4) with the relaxation times com- short times and to compare with experiments, we plot the
parable to the time scale of the problem. kernelK, and its experimental values in Fig. 4 with logarith-
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] o Expetiment 1 o Expetiment 1
0.7 .
a Experiment 2 10° a Experiment 2
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o

Current Theory (t=1100s, o = 0.1) Current Theory (1= 1100 s, o= 0.1)
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FIG. 3. KernelK,. The squares and triangles are the results F|G. 5. To illustrate the long time behavior, in this figure both
calculated form two experiments. Both of the experiments wereheoreticalk, and the experimental values are plotted in a logarith-
carried out by compressing the nitroplasticized estane specimefic scale. The theoretical values are shown to form a straight line
with a constant strain rate for 3.6 s and then recording the stresr large times, meanini, is asymptotic to an exponentially de-
a(t) change with time for 302 s while holding the strain constant.caying function for large times. The experimental values scatter
The final strain in these experiments was 15.2%. around the theoretical curve for large times. The scatter is due to the

noise in the experiment, which becomes more visible in a logarith-
mic scales in both axes. The experimental values are showhic plot than in a normal plot for small values.
to approach the straight line with slopel/2, as predicted ) )
by our theory. experimental values are seen to scatter around the theoretical

To illustrate the long time behavior of the kernel, we alsocurve in the figure. The scatter is due to the noise in the
plot K, in Fig. 5 with logarithmic scale in the vertical axis. €xperiment, which becomes more visible in a logarithmic
As mentioned before, for a large tim&,, approaches an Plot for small values.

exponential function, which is a straight line in the plot. The ~ With the relaxation time and coefficient of the kernel de-
termined using experimental data, we use this kernel to cal-

culated another compress-and-hold experiment with longer
compression duration and lower strain rate than those of the
experiments described above. The comparison of the calcu-
lated stress and the experimental results are shown in Fig. 6.

In many phenomenological models, the material is mod-
Current Theory (t=1100s, o = 0.1) eled as a series of Maxwell elements connected in parallel. In
many numerical codes, it is numerically convenient to ex-
press the kernel in terms of decaying exponential functions,
called a prony series. For this purpose, it is interesting to
approximate the kernel derived in this paper in terms of a
prony series as

1
10 T L N Y | T L | T UL

o Expetiment 1

a Experiment 2

10°

K.t

10 m
K,(t/7)~0.74>, 10"2exp —10'/7), (5.5
n=1

wherem is determined by equating 10'r to the smallest
time scale in the problem. Figure 7 shows the approximation
- to the kerneK, using different values afn. Roughly speak-
time (sec) ing, Fig. 7 shows that a term per decade is needed to ap-
proximate the kernel derived in this paper.
FIG. 4. The kerneK_ is plotted in a log-log scale. This figure

2
105

illustrates the asymptotic behavior Kf,. It is shown that, as pre- VI. CONCLUSION

dicted by the current theory, as timepproaches zero, the experi-

mentally obtained kernel indeed approaches gt ldsymptote, Beads in a polymer network are divided into bead groups
which is a straight line with slope- 1/2. represented by the end points of the segments to which the
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(UL L S B B LA B L B a bead and its surrounding beads belonging to other seg-

0.11 3 ments as a viscous force, and to model the second part of the

1 stress as a viscous stress. To calculate the third part of the

0.10 E stres, one needs to model the average motion of segments.
0.09 = The potential and thermal motion of the beads in a segment
0.08 E results in a Helmholtz free energy. The tendency of the sys-
= ] tem to maintain a minimum free energy leads to thermal
S 007 E elasticity of the segment. Since the force acting on a bead
& 0.06 E from its surrounding medium can be modeled as a viscous

8 005 E force, the motion of the segment can be modeled as an elas-
o ] tic spring immersed in a viscous fluid. The inertia of the

0-04 - segment is neglected because it is small compared to the
oo3HE © Experiment (strain rate = 4.47x10° ™) 3 viscous force. For this reason, the equation of motion for an

i E average segment can be written as a diffusion equation for

00214 Theory (1 =1100's, o.= 0.1, E, = 0.474 MPa) ] the displacement. When the segment is pulled at the ends, the
001 = deformation takes time to diffuse toward the center of the
oo Lot E segment; therefore the deformation is highly nonuniform in

0 50 100 }if;%e (ség()) 250 300 350 the average segment. This diffusion of deformation results in

a history integral in the constitutive relation for the third part
FIG. 6. Comparison of calculated stress and experimental valof the stress. After solving the diffusion equation, the kernel
ues. The experiment was carried out by compressing nitroplastin the history integral is found to approagh/t for a short
cized estane specimen with a constant strain rate for 35.5 s. THéme t, and to approach a decaying exponential for a large
final strain is 15.3%. time, wherer is the relaxation time related to the deforma-
tion diffusion. In this way, the constitutive relation for a solid
beads belong. Macroscopic continuity and momentum equdClymer can be written in three terms, the viscous term, the
tions are derived based on the interactions of the beaflastic term, and the history dependent term. The relaxation
groups. Macroscopic stress can be divided into three partdMme 7 in the history dependent term is a function of the
The first part represents the effects of velocity fluctuations of€9ment length. For a polymer, the segment length is widely
the beads in the system. The second part of the stress com@ésPersed and so is the spectrum of relaxation times. For a
from interactions among bead groups, except for the interacdiVen practical problem, only a few relaxation times close to
tion forces transmitted through the segments connectinf!€ ime scale of the problem are significant. The stress as-
them. The effect of the interaction forces transmitted througrpociated with a short relaxation time can be modeled as a
segments connecting different bead groups is represented N{FCOUS stress and the stress assc_)mated with a long relaxation
the third part. The interactions among the bead groups regime can be modeled as an elastic stress. _
resented by the second part are transient while the segments "€ Properties of our theoretically predicted kernel in the
connecting the bead groups are permanent. This difference SOy integral are conformed by experiments.
time scale enables us to model the interaction force between
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APPENDIX A

TheoremLet F andG 4 be uniformly differentiable func-
i tions of y;,Y¥», ..., ¥,, Wherea and 8 are two integers
satisfying = a<n and 1= g=n. If the functionG,,; satis-

10k e PTONY S€1iES (8 terms) _ fies

— — — — Prony series (6 terms)

10% - ;
— — — — Prony series (4 terms
v ¢ ) Gaﬁ(yliyZV"'vyai"'1y,81"'vyn)
1%k —_ Prony series (2 terms)
:_Gﬁa(yl!yZI e Yar e !yB! Tt !yn)!
-4 1 ] ] 1
10;g 10° 10° 107 107 10° (A1)
tt
FIG. 7. Prony series approximation of the kernel. then there is a following identity:
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N N
D (X—Ya) 2 F(Y1,Y2, -+ Yn)
a=1 f=1

XGaﬁ’(ylyer coyndyidys .. dyy

N
2de 2 Z X . aﬁ) (yliyZ!"'!yn)

.dyy
(A2)

XGup(Y1,Y2, -+ Y (Y= Yo)dyidys . .

forah,z=0,5(Yg—Ya), and 0<6,<1.

Proof. Let | be the integral on the left side of EGA2).
Since the integral is independent @fand B, by exchange
roles ofa and 8, we have

Z E [S(X—Y)F(Y1,Y2, - - - Yn)
XGaﬁ(ylly21 e vyn)+ 5(X_y,8)F(y1!y21 et :yn)
XGpo(Y1,Y2, - - - Yo 1dyidy, . .. dy,. (A3)

We note that the contribution from terms in whiet+ 8 is
zero because of EqAl). We now change integration vari-
ables as

r,=y,—yi, 1sys=n (A4)

and denote
F(y1.y2, .- yn)=f(y1.ra, .o i), (A5)
Gup(Y1:Y2s -+ Yn) =Gap(Y1,l2, - s rn), (A6)

then the integral becomes

El[; [8(X=1 o=y f(Y1.r2, - Fp)
Xgaﬁ(ylir21 v vrn)_‘s(x_rﬂ_yl)f(yler! e 7rn)
Xgaﬁ(yl:r21 ---1rn)]dyldr2"'drn! (A7)
|
N N
2, S0y 2 FLys . yGTHYLye

% %1 f O(X—

T2V A E

whereh®?= 6, 5(y?—y®), and 0<0,5<1.

—h*®)F(yLy?, ...

PHYSICAL REVIEW &5, 051806 (2002

where we have used EGA1). Upon integrating ovey,, we
have

2 2 [f(X—T 4, lo,s ... p)

a=1 =1
XOap(X—Tg o, oo F) = F(X=T =T op,o, oo l)
Xapg(X—T =T oMo, oo fp)]dry . ..dry, (A8)

where
Feg=Tg= =Yg Ya- (A9)

Upon using the Lagrangian theorem for the product ahd
9.5, We have

E 2 —[f(x o

xgaﬁ(x—r

Nagila, - ifn)

.dr,,
(A10)

a_haﬁvr2| CEE] ;rn)]raﬁdrz -

whereh,,z= 0,4l .5, and 0<6,5<1. Since functiong and
g.p are uniformly differentiable, we can exchange the order
of integration and differentiation and use the property of the
6 function to write

2dX 1121 ﬁz]_& X~Ta aﬁ_yl)f(yllrz,...,l’n)
Xgaﬁ(y1!r21 ...,rn)raﬁdyldrz...drn. (Al1)

Using Eq.(A4) to change the integration variables back to
Y1, --.,¥Yn, We obtain Eq(A2) and prove the theorem.
Following a similar procedure, we can prove the follow-
ing extension of the theorem.
Extension:For a uniformly differentiable vector function
G“# of vector variables/?, . .. y", if the following condi-

tion is satisfied:
G*=—-Ghe, (A12)

then

yhdytdy? ... dy"

Y Gap(YhY2 o yD(YP—y®)dyldy? . .. dy",  (A13)

We now use this relation to prove E@.27) in Sec. Il. According to definitiori2.12) we have
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J Using the convolution theorem, we have

J
n > F=] 2 3 ax-yoRFCypEndc

B=1p+a !

2o [t )
(A14) N(€/2,t)=7f0ue(t )K(T)dt ) (BS)

We now letG*#= F;‘B, F=P, and apply Eq(A13) to find where

-3 J 3
n 2 F§ﬁ=%\7- 2 2 [1+0(h*")] K(E)le[ \ﬁcow%). (86)
p=1p%a a=1g=1 T s
X 8(x—y*)FeP(C,t) (yP—x*)P(C,t)dC. We note that
(A15) _
COﬂ'(\/T_S):M:[l‘FeXF(—Z\/T—S)]

If the macroscopic length scale is large compared to the typi- 1—exp—2 Js)
cal segment length, the effectstof? can be neglected. With
this assumption we find Eq2.27) in Sec. Il by multiplying
both sides of Eq(A15) by (1=)f8(x’ —y#)d®x’, exchang-
ing orders of integration and, using definitig@.14). The

X

1+ k}_‘,l exp( — 2ky/7s)

conditionally average forc is determined b ”

Y ge forceFa) Y =1+2 exp(—2kyrs). (B7)
J J k=1
' ! — —ya 1B
P2(x" x){Fa)2(X".X) Zl le A(X=y") a(x" =y") Substituting Eq(B7) into Eq. (B6) and then performing the
inverse Laplace transformation, one finds
XFA(C,t)P(C,t)dC. (A16)

t T

The procedure used in the proof above is an extension of a K(;) Va1t Zgl exp( —k37/t) |. (BY)

similar result from Zhang and Rauenzahtl] and Zhang
and Prosperetfil3], where the result was limited to indistin- \we now study the properties of this kernel. g be the
guishable particle collections. That restriction is removedpeger part ofx. We note that

from the present proof.

0

APPENDIX B kz eX[X—kZT/t)=f exp( —[x]?7/t)dx. (B9)
=1 1

In this appendix, we solve Eq3.21) with boundary and

initial conditions(3.23), and study the properties of the so-
lution. We assume that the displacemgns along the direc- f

Forx=1, we have

tion connecting the two ends of a segment. To solve the
equation, we first apply a Laplace transform with respect to
time t to Eq. (3.21) and its boundary and initial conditions. ®
Denotings as the variable corresponding ttafter the trans- <f exd — (x—1)?7/t]dx.
formation, we have !

exp( —x27/t)dx< f exp( —[x]?/t)dx
1 1

R (B10)
. 02\ _ _
S\=- (B1)  Using Eq.(B9), we can write Eq(B10) as
T gx
0 1
R R R 2 _ 2
Sh(€/2,5)=04(s), £(0s)=0. (B2) fo exp(—x“7/t)dx fo exp(—xr/t)dx
The solution of Eq(B1) with boundary condition$B2) can * o
be written as <> exp(—kzr/t)<f exp(—x27/t)dx.
k=1 0
fxs) Ug(s)sinh(2x+/7s/€) (53 (B11)
X,S)= . .
ssinh(y/7s) By changing variable toy=x+/7/t, we see that
The Laplace transformation of the forbecan be calculated w t (= 1 [t
as f exp( —x27/t)dx= —f exp(— p?)dp==\/—
0 TJO 2 T
(B12)

. N 2K
N(€/2,5)= kO% = Toue(s) \[gcotl*( J7s).  (B4)

and

051806-14



EFFECTS OF NONUNIFORM SEGMENT DEFORMATION . .. PHYSICAL REVIEW &b, 051806 (2002

where

1 1 /ot
JO exp(—xZT/t)dx=§\/Terf(M), (B13)

t T
where erf is the error function. With this, inequalit®11) Kr(;) = VH
can be written as

% Using Eq.(B14), we obtain
1 t 1 t
A Zerfo VT < D exp—Kerit) </ —,
2 T k=1 2 T

(B14) \/%— erf( \[tz) <Kr(;)< \/% (B17)

where efrck) =1—efr(x) is the complementary error func-

tion. _ so that
We now write

—-1. (B16)

1+2, exp—k27/t)
k=1

t , t_
;) , (815) lim Kr(;) =0. (818)

t—oo
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